Conventional material models cannot describe material behaviors precisely in micro/mesoscale due to the size/scale effects. In micro/mesoscale forming process, the reaction force, localized stress concentration, and formability are not only dependent on the strain distribution and strain path but also on the strain gradient and strain gradient path caused by decreased scale. This study presented an analytical model based on the conventional mechanism of strain gradient (CMSG) plasticity. Finite element (FE) simulations were performed to study the effects of the width of microchannel features. Die sets were fabricated and micro/mesoscale sheet forming experiments were conducted. The results indicated that the CMSG plastic theory achieves better agreements compared to the conventional plastic theory. It was also found that the influence of strain gradient on the forming process increases with the decrease of the geometrical parameters of tools. Furthermore, the feature size effects in the forming process were evaluated and quantitated by the similarity difference and the similarity accuracy. Various tool geometrical parameters were designed based on the Taguchi method to explore the influence of the strain gradient caused by the decrease of tool dimension. According to the scale law, the difference and accuracy of similarity were calculated. Greater equivalent strain gradient was revealed with the decrease of tool dimension, which led to the greater maximum reaction force error due to the increasing size effects. The main effect plots for equivalent strain gradient and reaction force indicated that the influence of tools clearance is greater than those of punch radius, die radius, and die width.

References

References
1.
Lai
,
X.
,
Li
,
H.
,
Li
,
C.
,
Lin
,
Z.
, and
Ni
,
J.
,
2008
, “
Modeling and Analysis of Micro Scale Milling Considering Size Effect, Micro Cutter Edge Radius and Minimum Chip Thickness
,”
Int. J. Mach. Tools Manuf.
,
48
(
1
), pp.
1
14
.10.1016/j.ijmachtools.2007.08.011
2.
Liu
,
J. G.
,
Fu
,
M. W.
,
Lu
,
J.
, and
Chan
,
W. L.
,
2011
, “
Influence of Size Effect on the Springback of Sheet Metal Foils in Micro-Bending
,”
Comp. Mater. Sci.
,
50
(
9
), pp.
2604
2614
.10.1016/j.commatsci.2011.04.002
3.
Peng
,
X.
,
Qin
,
Y.
, and
Balendra
,
R.
,
2004
, “
Analysis of Laser-Heating Methods for Micro-Parts Stamping Applications
,”
J. Mater. Process. Technol.
,
150
(
1–2
), pp.
84
91
.10.1016/j.jmatprotec.2004.01.024
4.
Peng
,
L. F.
,
Hu
,
P.
,
Lai
,
X. M.
,
Mei
,
D. Q.
, and
Ni
,
J.
,
2009
, “
Investigation of Micro/Meso Sheet Soft Punch Stamping Process—Simulation and Experiments
,”
Mater. Des.
,
30
(
3
), pp.
783
790
.10.1016/j.matdes.2008.05.074
5.
Gong
,
F.
,
Guo
,
B.
,
Wang
,
C.
, and
Shan
,
D.
,
2011
, “
Micro Deep Drawing of Micro Cups by Using DLC Film Coated Blank Holders and Dies
,”
Diamond Relat. Mater.
,
20
(
2
), pp.
196
200
.10.1016/j.diamond.2010.11.025
6.
Molotnikov
,
A.
,
Lapovok
,
R.
,
Gu
,
C. F.
,
Davies
,
C. H. J.
, and
Estrin
,
Y.
,
2012
, “
Size Effects in Micro Cup Drawing
,”
Mater. Sci. Eng. A
,
550
, pp.
312
319
.10.1016/j.msea.2012.04.079
7.
Attia
,
U. M.
, and
Alcock
,
J. R.
,
2012
, “
Fabrication of Hollow, 3D, Micro-Scale Metallic Structures by Micro-Powder Injection Moulding
,”
J. Mater. Process. Technol.
,
212
(
10
), pp.
2148
2153
.10.1016/j.jmatprotec.2012.05.022
8.
Cao
,
J.
,
Krishnan
,
N.
,
Wang
,
Z.
,
Lu
,
H.
,
Liu
,
W. K.
, and
Swanson
,
A.
,
2004
, “
Microforming: Experimental Investigation of the Extrusion Process for Micropins and Its Numerical Simulation Using RKEM
,”
ASME J. Manuf. Sci. Eng.
,
126
(
4
), pp.
642
652
.10.1115/1.1813468
9.
Chan
,
W. L.
,
Fu
,
M. W.
, and
Yang
,
B.
,
2011
, “
Study of Size Effect in Micro-Extrusion Process of Pure Copper
,”
Mater. Des.
,
32
(
7
), pp.
3772
3782
.10.1016/j.matdes.2011.03.045
10.
Vollertsen
,
F.
,
Hu
,
Z.
,
Niehoff
,
H. S.
, and
Theiler
,
C.
,
2004
, “
State of the Art in Micro Forming and Investigations Into Micro Deep Drawing
,”
J. Mater. Process. Technol.
,
151
(
1–3
), pp.
70
79
.10.1016/j.jmatprotec.2004.04.266
11.
Voll
,
F.
,
Biermann
,
D.
,
Hansen
,
H. N.
,
Jawahir
,
I. S.
, and
Kuzman
,
K.
,
2009
, “
Size Effects in Manufacturing of Metallic Components
,”
CIRP Ann. Manuf. Technol.
,
58
(
2
), pp.
566
587
.10.1016/j.cirp.2009.09.002
12.
Zhang
,
K. F.
, and
Kun
,
L.
,
2009
, “
Classification of Size Effects and Similarity Evaluating Method in Micro Forming
,”
J. Mater. Process. Technol.
,
209
(
11
), pp.
4949
4953
.10.1016/j.jmatprotec.2008.11.018
13.
Engel
,
U.
, and
Eckstein
,
R.
,
2002
, “
Microforming—From Basic Research to Its Realization
,”
J. Mater. Process. Technol.
,
125–126
, pp.
35
44
.10.1016/S0924-0136(02)00415-6
14.
Vollertsen
,
F.
,
Schulze
Niehoff
,
H.
, and
Hu
,
Z.
,
2006
, “
State of the Art in Micro Forming
,”
Int. J. Mach. Tools Manuf.
,
46
(
11
), pp.
1172
1179
.10.1016/j.ijmachtools.2006.01.033
15.
Liu
,
J. G.
,
Fu
,
M. W.
, and
Chan
,
W. L.
,
2012
, “
A Constitutive Model for Modeling of the Deformation Behavior in Microforming With a Consideration of Grain Boundary Strengthening
,”
Comput. Mater. Sci.
,
55
, pp.
85
94
.10.1016/j.commatsci.2011.11.018
16.
Peng
,
L. F.
,
Lai
,
X. M.
,
Lee
,
H. J.
,
Song
,
J. H.
, and
Ni
,
J.
,
2009
, “
Analysis of Micro/Mesoscale Sheet Forming Process With Uniform Size Dependent Material Constitutive Model
,”
Mater. Sci. Eng. A
,
526
(
1–2
), pp.
93
99
.10.1016/j.msea.2009.06.061
17.
Kim
,
G.-Y.
,
Ni
,
J.
, and
Koc
,
M.
,
2007
, “
Modeling of the Size Effects on the Behavior of Metals in Microscale Deformation Processes
,”
ASME J. Manuf. Sci. Eng.
,
129
(
3
), pp.
470
476
.10.1115/1.2714582
18.
Fleck
,
N.
,
Muller
,
G.
,
Ashby
,
M.
, and
Hutchinson
,
J.
,
1994
, “
Strain Gradient Plasticity: Theory and Experiment
,”
Acta Metall. Mater.
,
42
(
2
), pp.
475
487
.10.1016/0956-7151(94)90502-9
19.
Gao
,
H.
,
Huang
,
Y.
,
Nix
,
W. D.
, and
Hutchinson
,
J. W.
,
1999
, “
Mechanism-Based Strain Gradient Plasticity—I. Theory
,”
J. Mech. Phys. Solids
,
47
(
6
), pp.
1239
1263
.10.1016/S0022-5096(98)00103-3
20.
Huang
,
Y.
,
Gao
,
H.
,
Nix
,
W. D.
, and
Hutchinson
,
J. W.
,
2000
, “
Mechanism-Based Strain Gradient Plasticity—II. Analysis
,”
J. Mech. Phys. Solids
,
48
(
1
), pp.
99
128
.10.1016/S0022-5096(99)00022-8
21.
Huang
,
Y.
,
Xue
,
Z.
,
Gao
,
H.
,
Nix
,
W. D.
, and
Xia
,
Z. C.
,
2000
, “
A Study of Microindentation Hardness Tests by Mechanism-Based Strain Gradient Plasticity
,”
J. Mater. Res.
,
15
(
8
), pp.
1786
1796
.10.1557/JMR.2000.0258
22.
Acharya
,
A.
, and
Bassani
,
J. L.
,
2000
, “
Lattice Incompatibility and a Gradient Theory of Crystal Plasticity
,”
J. Mech. Phys. Solids
,
48
(
8
), pp.
1565
1595
.10.1016/S0022-5096(99)00075-7
23.
Evers
,
L. P.
,
Parks
,
D. M.
,
Brekelmans
,
W. A. M.
, and
Geers
,
M. G. D.
,
2002
, “
Crystal Plasticity Model With Enhanced Hardening by Geometrically Necessary Dislocation Accumulation
,”
J. Mech. Phys. Solids
,
50
(
11
), pp.
2403
2424
.10.1016/S0022-5096(02)00032-7
24.
Huang
,
Y.
,
Qu
,
S.
,
Hwang
,
K. C.
,
Li
,
M.
, and
Gao
,
H.
,
2004
, “
A Conventional Theory of Mechanism-Based Strain Gradient Plasticity
,”
Int. J. Plast.
,
20
(
4–5
), pp.
753
782
.10.1016/j.ijplas.2003.08.002
25.
Wang
,
H.
,
Hwang
,
K. C.
,
Huang
,
Y.
,
Wu
,
P. D.
,
Liu
,
B.
,
Ravichandran
,
G.
,
Han
,
C. S.
, and
Gao
,
H.
,
2007
, “
A Conventional Theory of Strain Gradient Crystal Plasticity Based on the Taylor Dislocation Model
,”
Int. J. Plast.
,
23
(
9
), pp.
1540
1554
.10.1016/j.ijplas.2007.01.004
26.
Wang
,
W.
,
Huang
,
Y.
,
Hsia
,
K. J.
,
Hu
,
K. X.
, and
Chandra
,
A.
,
2003
, “
A Study of Microbend Test by Strain Gradient Plasticity
,”
Int. J. Plast.
,
19
(
3
), pp.
365
382
.10.1016/S0749-6419(01)00066-3
27.
Michel
,
J. F.
, and
Picart
,
P.
,
2002
, “
Modeling the Constitutive Behaviour of Thin Metal Sheet Using Strain Gradient Theory
,”
J. Mater. Process. Technol.
,
125–126
, pp.
164
169
.10.1016/S0924-0136(02)00370-9
28.
Shu
,
J. Y.
, and
Fleck
,
N. A.
,
1998
, “
The Prediction of a Size Effect in Microindentation
,”
Int. J. Solids Struct.
,
35
(
13
), pp.
1363
1383
.10.1016/S0020-7683(97)00112-1
29.
Li
,
H.-Z.
,
Dong
,
X.-H.
,
Shen
,
Y.
,
Zhou
,
R.
,
Diehl
,
A.
,
Hagenah
,
H.
,
Engel
,
U.
,
Merklein
,
M.
, and
Cao
,
J.
,
2012
, “
Analysis of Microbending of CuZn37 Brass Foils Based on Strain Gradient Hardening Models
,”
J. Mater. Process. Technol.
,
212
(
3
), pp.
653
661
.10.1016/j.jmatprotec.2011.10.007
30.
Swaddiwudhipong
,
S.
,
Tho
,
K. K.
,
Hua
,
J.
, and
Liu
,
Z. S.
,
2006
, “
Mechanism-Based Strain Gradient Plasticity in C0 Axisymmetric Element
,”
Int. J. Solids Struct.
,
43
(
5
), pp.
1117
1130
.10.1016/j.ijsolstr.2005.05.026
31.
Kocks
,
U
.,
1970
, “
The Relation Between Polycrystal Deformation and Single-Crystal Deformation
,”
Metall. Mater. Trans. B
,
1
(
5
), pp.
1121
1143
.
32.
Liu
,
B.
,
Huang
,
Y.
,
Li
,
M.
,
Hwang
,
K. C.
, and
Liu
,
C.
,
2005
, “
A Study of the Void Size Effect Based on the Taylor Dislocation Model
,”
Int. J. Plast.
,
21
(
11
), pp.
2107
2122
.10.1016/j.ijplas.2005.03.016
33.
Kok
,
S.
,
Beaudoin
,
A. J.
, and
Tortorelli
,
D. A.
,
2002
, “
A Polycrystal Plasticity Model Based on the Mechanical Threshold
,”
Int. J. Plast.
,
18
(
5–6
), pp.
715
741
.10.1016/S0749-6419(01)00051-1
34.
Lele
,
S. P.
, and
Anand
,
L.
,
2009
, “
A Large-Deformation Strain-Gradient Theory for Isotropic Viscoplastic Materials
,”
Int. J. Plast.
,
25
(
3
), pp.
420
453
.10.1016/j.ijplas.2008.04.003
35.
Swadener
,
J. G.
,
George
,
E. P.
, and
Pharr
,
G. M.
,
2002
, “
The Correlation of the Indentation Size Effect Measured With Indenters of Various Shapes
,”
J. Mech. Phys. Solids
,
50
(
4
), pp.
681
694
.10.1016/S0022-5096(01)00103-X
36.
Fleck
,
N. A.
, and
Hutchinson
,
J. W.
,
1997
, “
Strain Gradient Plasticity
,”
Advances in Applied Mechanics
,
W. H.
John
, and
Y. W.
Theodore
, eds.,
Elsevier
,
London, UK
, pp.
295
361
.
37.
Engel
,
U
.,
2006
, “
Tribology in Microforming
,”
Wear
,
260
(
3
), pp.
265
273
.10.1016/j.wear.2005.04.021
38.
Messner
,
A.
,
Engel
,
U.
,
Kals
,
R.
, and
Vollertsen
,
F.
,
1994
, “
Size Effect in the FE-Simulation of Micro-Forming Processes
,”
J. Mater. Process. Technol.
,
45
(
1–4
), pp.
371
376
.10.1016/0924-0136(94)90368-9
39.
Deng
,
J. H.
,
Fu
,
M. W.
, and
Chan
,
W. L.
,
2011
, “
Size Effect on Material Surface Deformation Behavior in Micro-Forming Process
,”
Mater. Sci. Eng. A
,
528
(
13–14
), pp.
4799
4806
.10.1016/j.msea.2011.03.005
40.
Krishnan
,
N.
,
Cao
,
J.
, and
Dohda
,
K.
,
2007
, “
Study of the Size Effects on Friction Conditions in Microextrusion—Part I: Microextrusion Experiments and Analysis
,”
ASME J. Manuf. Sci. Eng.
,
129
(
4
), pp.
669
676
.10.1115/1.2386207
41.
Peng
,
L. F.
,
Lai
,
X. M.
,
Lee
,
H. J.
,
Song
,
J. H.
, and
Ni
,
J.
,
2010
, “
Friction Behavior Modeling and Analysis in Micro/Meso Scale Metal Forming Process
,”
Mater. Des.
,
31
(
4
), pp.
1953
1961
.10.1016/j.matdes.2009.10.040
42.
Zheng
,
W.
,
Wang
,
G.
,
Zhao
,
G.
,
Wei
,
D.
, and
Jiang
,
Z.
,
2013
, “
Modeling and Analysis of Dry Friction in Micro-Forming of Metals
,”
Tribol. Int.
,
57
, pp.
202
209
.10.1016/j.triboint.2012.06.031
You do not currently have access to this content.