Pure titanium is an ideal material for biomedical implant applications for its superior biocompatibility, but it lacks of the mechanical strength required in these applications compared with titanium alloys. This research is concerned with an innovative laser peening-based material process to improve the mechanical strength and cell attachment property of pure titanium in biomedical applications. Evidence has shown that engineered surface with unsmooth topologies will contribute to the osteoblast differentiation in human mesenchymal pre-osteoblastic cells, which is helpful to avoid long-term peri-abutment inflammation issues for the dental implant therapy with transcutaneous devices. However, surface quality is difficult to control or mechanical strength is not enhanced using conventional approaches. In this paper, a novel high energy pulse laser peening (HEPLP) process is proposed to both improve the mechanical strength and introduce a micropattern into the biomedical implant material of a commercially pure Titanium (cpTi). The strong shock wave generated by HEPLP presses a stainless steel grid, used as a stamp, on cpTi foils to imprint a micropattern. To understand the basic science during the process, the HEPLP induced shock wave pressure profile and history are modeled by a multiphysics hydrodynamic numerical analysis. The micropatterns and strength enhancement are then simulated using a dislocation density-based finite element (FE) framework. Finally, cell culture tests are conducted to investigate the biomedical performance of the patterned surface.

References

References
1.
Subramani
,
K.
, and
Mathew
,
R. T.
,
2012
, “
Chapter 6—Titanium Surface Modification Techniques for Dental Implants—From Microscale to Nanoscale
,”
Emerging Nanotechnologies in Dentistry
,
William Andrew Publishing
,
Boston, MA
, pp.
85
102
.
2.
Subramani
,
K.
,
Tran
,
D.
, and
Nguyen
,
K. T.
,
2012
, “
Chapter 8—Cellular Responses to Nanoscale Surface Modifications of Titanium Implants for Dentistry and Bone Tissue Engineering Applications
,”
Emerging Nanotechnologies in Dentistry
,
William Andrew Publishing
,
Boston, MA
, pp.
113
136
.
3.
Rack
,
H. J.
, and
Qazi
,
J. I.
,
2006
, “
Titanium Alloys for Biomedical Applications
,”
Mater. Sci. Eng. C
,
26
(
8
), pp.
1269
1277
.10.1016/j.msec.2005.08.032
4.
Lan
,
S.
,
Veiseh
,
M.
, and
Zhang
,
M.
,
2005
, “
Surface Modification of Silicon and Gold-Patterned Silicon Surfaces for Improved Biocompatibility and Cell Patterning Selectivity
,”
Biosensors Bioelectron.
,
20
(
9
), pp.
1697
1708
.10.1016/j.bios.2004.06.025
5.
Metikoš-Huković
,
M.
,
Kwokal
,
A.
, and
Piljac
,
J.
,
2003
, “
The Influence of Niobium and Vanadium on Passivity of Titanium-Based Implants in Physiological Solution
,”
Biomaterials
,
24
(
21
), pp.
3765
3775
.10.1016/S0142-9612(03)00252-7
6.
Aksakal
,
B.
,
Yildirim
,
Ö. S.
, and
Gul
,
H.
,
2004
, “
Metallurgical Failure Analysis of Various Implant Materials Used in Orthopedic Applications
,”
J. Failure Anal. Prevent.
,
4
(
3
), pp.
17
23
.10.1007/s11668-996-0007-9
7.
Thalji
,
G.
,
Gretzer
,
C.
, and
Cooper
,
L. F.
,
2013
, “
Comparative Molecular Assessment of Early Osseointegration in Implant-Adherent Cells
,”
Bone
,
52
(
1
), pp.
444
453
.10.1016/j.bone.2012.07.026
8.
Manivasagam
,
G.
,
Dhinasekaran
,
D.
, and
Rajamanickam
,
A.
,
2010
, “
Biomedical Implants: Corrosion and Its Prevention—A Review
,”
Recent Patents Corros. Sci.
,
2
(
1
), pp.
40
54
.10.2174/1877610801002010040
9.
Wu
,
B.
, and
Shin
,
Y. C.
,
2007
, “
A One-Dimensional Hydrodynamic Model for Pressures Induced Near the Coating-Water Interface During Laser Shock Peening
,”
J. Appl. Phys.
,
101
(
2
), pp.
23510
23515
.10.1063/1.2426981
10.
Cao
,
Y.
,
Shin
,
Y. C.
, and
Wu
,
B.
,
2010
, “
Parametric Study on Single Shot and Overlapping Laser Shock Peening on Various Metals Via Modeling and Experiments
,”
ASME J. Manuf. Sci. Eng.
,
132
(
6
), p.
061010
.10.1115/1.4002850
11.
Ding
,
H.
, and
Shin
,
Y. C.
,
2012
, “
Dislocation Density-Based Modeling of Subsurface Grain Refinement With Laser-Induced Shock Compression
,”
Comput. Mater. Sci.
,
53
(
1
), pp.
79
88
.10.1016/j.commatsci.2011.08.038
12.
Ye
,
C.
, and
Cheng
,
G. J.
,
2012
, “
Scalable Patterning on Shape Memory Alloy by Laser Shock Assisted Direct Imprinting
,”
Appl. Surf. Sci.
,
258
(
24
), pp.
10042
10046
.10.1016/j.apsusc.2012.06.070
13.
Pence
,
C.
,
Ding
,
H.
,
Shen
,
N.
, and
Ding
,
H.
,
2013
, “
Experimental Analysis of Sheet Metal Micro-Bending Using a Nanosecond-Pulsed Laser
,”
Int. J. Adv. Manuf. Technol.
,
69
(
1–4
), pp.
1
9
.10.1007/s00170-013-5032-8
14.
Lu
,
J. Z.
,
Luo
,
K. Y.
,
Zhang
,
Y. K.
,
Cui
,
C. Y.
,
Sun
,
G. F.
,
Zhou
,
J. Z.
,
Zhang
,
L.
,
You
,
J.
,
Chen
,
K. M.
, and
Zhong
,
J. W.
,
2010
, “
Grain Refinement of LY2 Aluminum Alloy Induced by Ultra-High Plastic Strain During Multiple Laser Shock Processing Impacts
,”
Acta Mater.
,
58
(
11
), pp.
3984
3994
.10.1016/j.actamat.2010.03.026
15.
Lu
,
J. Z.
,
Luo
,
K. Y.
,
Zhang
,
Y. K.
,
Sun
,
G. F.
,
Gu
,
Y. Y.
,
Zhou
,
J. Z.
,
Ren
,
X. D.
,
Zhang
,
X. C.
,
Zhang
,
L. F.
,
Chen
,
K. M.
,
Cui
,
C. Y.
,
Jiang
,
Y. F.
,
Feng
,
A. X.
, and
Zhang
,
L.
,
2010
, “
Grain Refinement Mechanism of Multiple Laser Shock Processing Impacts on ANSI 304 Stainless Steel
,”
Acta Mater.
,
58
(
16
), pp.
5354
5362
.10.1016/j.actamat.2010.06.010
16.
Lu
,
J. Z.
,
Zhong
,
J. W.
,
Luo
,
K. Y.
,
Zhang
,
L.
,
Dai
,
F. Z.
,
Chen
,
K. M.
,
Wang
,
Q. W.
,
Zhong
,
J. S.
, and
Zhang
,
Y. K.
,
2011
, “
Micro-Structural Strengthening Mechanism of Multiple Laser Shock Processing Impacts on AISI 8620 Steel
,”
Mater. Sci. Eng. A
,
528
(
19-20
), pp.
6128
6133
.10.1016/j.msea.2011.04.018
17.
Zhang
,
X. C.
,
Zhang
,
Y. K.
,
Lu
,
J. Z.
,
Xuan
,
F. Z.
,
Wang
,
Z. D.
, and
Tu
,
S. T.
,
2010
, “
Improvement of Fatigue Life of Ti–6Al–4V Alloy by Laser Shock Peening
,”
Mater. Sci. Eng.: A
,
527
(
15
), pp.
3411
3415
.10.1016/j.msea.2010.01.076
18.
Garbacz
,
H.
,
Pisarek
,
M.
, and
Kurzydłowski
,
K. J.
,
2007
, “
Corrosion Resistance of Nanostructured Titanium
,”
Biomol. Eng.
,
24
(
5
), pp.
559
563
.10.1016/j.bioeng.2007.08.007
19.
Nakai
,
M.
,
Niinomi
,
M.
,
Hieda
,
J.
,
Yilmazer
,
H.
, and
Todaka
,
Y.
,
2013
, “
Heterogeneous Grain Refinement of Biomedical Ti–29Nb–13Ta–4.6Zr Alloy Through High-Pressure Torsion
,”
Sci. Iran.
,
20
(
3
), pp.
1067
1070
10.1016/j.scient.2013.01.004.
20.
Huang
,
R.
, and
Han
,
Y.
,
2013
, “
The Effect of SMAT-Induced Grain Refinement and Dislocations on the Corrosion Behavior of Ti–25Nb–3Mo–3Zr–2Sn Alloy
,”
Mater. Sci. Eng. C
,
33
(
4
), pp.
2353
2359
.10.1016/j.msec.2013.01.068
21.
Kim
,
H. S.
, and
Kim
,
W. J.
,
2014
, “
Annealing Effects on the Corrosion Resistance of Ultrafine-Grained Pure Titanium
,”
Corros. Sci.
,
89
, pp.
331
337
.10.1016/j.corsci.2014.08.017
22.
Mishnaevsky
,
L.
,
Levashov
,
E.
,
Valiev
,
R. Z.
,
Segurado
,
J.
,
Sabirov
,
I.
,
Enikeev
,
N.
,
Prokoshkin
,
S.
,
Solov'yov
,
A. V.
,
Korotitskiy
,
A.
,
Gutmanas
,
E.
,
Gotman
,
I.
,
Rabkin
,
E.
,
Psakh'e
,
S.
,
Dluhoš
,
L.
,
Seefeldt
,
M.
, and
Smolin
,
A.
,
2014
, “
Nanostructured Titanium-Based Materials for Medical Implants: Modeling and Development
,”
Mater. Sci. Eng. R
,
81
, pp.
1
19
.10.1016/j.mser.2014.04.002
23.
Kumar
,
S.
, and
Narayanan
,
T. S. N. S.
,
2008
, “
Corrosion Behaviour of Ti–15Mo Alloy for Dental Implant Applications
,”
J. Dentistry
,
36
(
7
), pp.
500
507
.10.1016/j.jdent.2008.03.007
24.
Singh
,
R.
, and
Dahotre
,
N. B.
,
2007
, “
Corrosion Degradation and Prevention by Surface Modification of Biometallic Materials
,”
J. Mater. Sci.
,
18
(
5
), pp.
725
751
10.1007/s10856-006-0016-y.
25.
Antunes
,
R. A.
, and
de Oliveira
,
M. C. L.
,
2012
, “
Corrosion Fatigue of Biomedical Metallic Alloys: Mechanisms and Mitigation
,”
Acta Biomater.
,
8
(
3
), pp.
937
962
.10.1016/j.actbio.2011.09.012
26.
Papakyriacou
,
M.
,
2000
, “
Effects of Surface Treatments on High Cycle Corrosion Fatigue of Metallic Implant Materials
,”
Int. J. Fatigue
,
22
(
10
), pp.
873
886
.10.1016/S0142-1123(00)00057-8
27.
Schneider
,
G. B.
,
Zaharias
,
R.
,
Seabold
,
D.
,
Keller
,
J.
, and
Stanford
,
C.
,
2004
, “
Differentiation of Preosteoblasts is Affected by Implant Surface Microtopographies
,”
J. Biomed. Mater. Res. Part A
,
69A
(
3
), pp.
462
468
.10.1002/jbm.a.30016
28.
Masaki
,
C.
,
Schneider
,
G. B.
,
Zaharias
,
R.
,
Seabold
,
D.
, and
Stanford
,
C.
,
2005
, “
Effects of Implant Surface Microtopography on Osteoblast Gene Expression
,”
Clin. Oral Implants Res.
,
16
(
6
), pp.
650
656
.10.1111/j.1600-0501.2005.01170.x
29.
Rupp
,
F.
,
Scheideler
,
L.
,
Olshanska
,
N.
,
de Wild
,
M.
,
Wieland
,
M.
, and
Geis-Gerstorfer
,
J.
,
2006
, “
Enhancing Surface Free Energy and Hydrophilicity Through Chemical Modification of Microstructured Titanium Implant Surfaces
,”
J. Biomed. Mater. Res. Part A
,
76A
(
2
), pp.
323
334
.10.1002/jbm.a.30518
30.
Olmedo
,
D. G.
,
Duffó
,
G.
,
Cabrini
,
R. L.
, and
Guglielmotti
,
M. B.
,
2008
, “
Local Effect of Titanium Implant Corrosion: An Experimental Study in Rats
,”
Int. J. Oral Maxillofacial Surg.
,
37
(
11
), pp.
1032
1038
.10.1016/j.ijom.2008.05.013
31.
Peyre
,
P.
,
Scherpereel
,
X.
,
Berthe
,
L.
,
Carboni
,
C.
,
Fabbro
,
R.
,
Béranger
,
G.
, and
Lemaitre
,
C.
,
2000
, “
Surface Modifications Induced in 316L Steel by Laser Peening and Shot-Peening. Influence on Pitting Corrosion Resistance
,”
Mater. Sci. Eng. A
,
280
(
2
), pp.
294
302
.10.1016/S0921-5093(99)00698-X
32.
Pedrotti
,
F. L.
, and
Pedrotti
,
L. S.
,
1993
,
Introduction to Optics
,
Prentice-Hall
,
Englewood Cliffs, NJ
.
33.
Ginzburg
,
V. L.
,
1961
,
Propagation of Electromagnetic Waves in Plasma
,
Gordon and Breach
,
New York
.
34.
Toth
,
L. S.
,
Molinari
,
A.
,
Estrin
,
Y.
, and
Tóth
,
L. S.
,
2002
, “
Strain Hardening at Large Strains as Predicted by Dislocation Based Polycrystal Plasticity Model
,”
ASME J. Eng. Mater. Technol.
,
124
(
1
), pp.
71
77
.10.1115/1.1421350
35.
Baik
,
S. C.
,
Estrin
,
Y.
,
Kim
,
H. S.
,
Jeong
,
H.-T.
, and
Hellmig
,
R. J.
,
2002
, “
Calculation of Deformation Behavior and Texture Evolution During Equal Channel Angular Pressing of IF Steel Using Dislocation Based Modeling of Strain Hardening
,”
Mater. Sci. Forum
,
408–412
, pp.
697
702
.10.4028/www.scientific.net/MSF.408-412.697
36.
Shen
,
N.
, and
Ding
,
H.
,
2014
, “
Physics-Based Microstructure Simulation for Drilled Hole Surface in Hardened Steel
,”
ASME J. Manuf. Sci. Eng.
,
136
(
4
), p.
044504
.10.1115/1.4027732
37.
Ding
,
H.
, and
Shin
,
Y. C.
,
2013
, “
Multi-Physics Modeling and Simulations of Surface Microstructure Alteration in Hard Turning
,”
J. Mater. Process. Technol.
,
213
(
6
), pp.
877
886
.10.1016/j.jmatprotec.2012.12.016
38.
Ding
,
H.
,
Shen
,
N.
, and
Shin
,
Y. C.
,
2012
, “
Predictive Modeling of Grain Refinement During Multi-Pass Cold Rolling
,”
J. Mater. Process. Technol.
,
212
(
5
), pp.
1003
1013
.10.1016/j.jmatprotec.2011.12.005
39.
Ding
,
H.
, and
Shin
,
Y.
,
2014
, “
Dislocation Density-Based Grain Refinement Modeling of Orthogonal Cutting of Titanium
,”
ASME J. Manuf. Sci. Eng.
,
136
(
4
), p.
041003
.10.1115/1.4027207
40.
Davis
,
J. R.
,
1990
,
Properties and Selection: Nonferrous Alloys and Special-Purpose Materials
,
ASM International
,
Almere, The Netherlands
.
41.
Ding
,
H.
, and
Shin
,
Y. C.
,
2012
, “
A Metallo-Thermomechanically Coupled Analysis of Orthogonal Cutting of AISI 1045 Steel
,”
ASME J. Manuf. Sci. Eng.
,
134
(
5
), p.
51014
.10.1115/1.4007464
42.
Evans
,
M. D.
, and
Steele
,
J. G.
,
1997
, “
Multiple Attachment Mechanisms of Corneal Epithelial Cells to a Polymer—Cells can Attach in the Absence of Exogenous Adhesion Proteins Through a Mechanism That Requires Microtubules
,”
Exp. Cell Res.
,
233
(
1
), pp.
88
98
.10.1006/excr.1997.3523
43.
Blawas
,
A. S.
, and
Reichert
,
W. M.
,
1998
, “
Protein Patterning
,”
Biomaterials
,
19
(
7-9
), pp.
595
609
.10.1016/S0142-9612(97)00218-4
44.
Craighead
,
H. G.
,
James
,
C. D.
, and
Turner
,
A. M. P.
,
2001
, “
Chemical and Topographical Patterning for Directed Cell Attachment
,”
Curr. Opinion Solid State Mater. Sci.
,
5
(
2–3
), pp.
177
184
.10.1016/S1359-0286(01)00005-5
45.
Thissen
,
H.
,
Johnson
,
G.
,
Hartley
,
P. G.
,
Kingshott
,
P.
, and
Griesser
,
H. J.
,
2006
, “
Two-Dimensional Patterning of Thin Coatings for the Control of Tissue Outgrowth
,”
Biomaterials
,
27
(
1
), pp.
35
43
.10.1016/j.biomaterials.2005.05.037
You do not currently have access to this content.