A new process, decoupled functional imprint lithography (D-FIL), is presented for fabricating low elastic modulus polymeric nanocarriers possessing Young's modulus of bulk material as low as sub-1 MPa. This method is employed to fabricate sub-50 nm diameter cylinders with >3:1 aspect ratio and other challenging shapes from low elastic modulus polymers such as N-isopropylacrylamide (NIPAM) and poly(ethylene glycol) di-acrylate (PEGDA), possessing Young's modulus of bulk material <10 MPa which is cannot otherwise be imprinted in similar size and pitch using existing imprint techniques. Standard imprint lithography polymers have Young's modulus >1 GPa, and so these polymers used in nanocarrier fabrication in comparison have very low elastic modulus. Monodispersed, shape- and size-specific nanocarriers composed of NIPAM with material elastic modulus of <1 MPa have been fabricated and show thermal responsive behavior at the lower critical solubility temperature (LCST) of ∼32 °C. In addition, re-entrant shaped nanocarriers composed of PEGDA with elastic modulus <10 MPa are also fabricated. Nanocarriers fabricated from PEGDA are shown with model imaging agent and anticancer drug (Doxorubicin) encapsulated in as small as 50 nm cylindrical nanocarriers.

References

References
1.
Davis
,
M. E.
,
Chen
,
Z.
, and
Shin
,
D. M.
,
2008
, “
Nanoparticle Therapeutics: An Emerging Treatment Modality for Cancer
,”
Nat. Rev. Drug Discovery
,
7
(
9
), pp.
771
782
.10.1038/nrd2614
2.
Hughes
,
G. A.
,
2005
, “
Nanostructure-Mediated Drug Delivery
,”
Nanomedicine
,
1
(
1
), pp.
22
30
.10.1016/j.nano.2004.11.009
3.
Panyam
,
J.
, and
Labhasetwar
,
V.
,
2003
, “
Biodegradable Nanoparticles for Drug and Gene Delivery to Cells and Tissue
,”
Adv. Drug Delivery Rev.
,
55
(
3
), pp.
329
347
.10.1016/S0169-409X(02)00228-4
4.
Petros
,
R. A.
, and
DeSimone
,
J. M.
,
2010
, “
Strategies in the Design of Nanoparticles for Therapeutic Applications
,”
Nat. Rev. Drug Discovery
,
9
(
8
), pp.
615
627
.10.1038/nrd2591
5.
Cabral
,
H.
,
Matsumoto
,
Y.
,
Mizuno
,
K.
,
Chen
,
Q.
,
Murakami
,
M.
,
Kimura
,
M.
,
Terada
,
Y.
,
Kano
,
M. R.
,
Miyazono
,
K.
,
Uesaka
,
M.
,
Nishiyama
,
N.
, and
Kataoka
,
K.
,
2011
, “
Accumulation of Sub-100 nm Polymeric Micelles in Poorly Permeable Tumours Depends on Size
,”
Nat. Nanotechnol.
,
6
(
12
), pp.
815
823
.10.1038/nnano.2011.166
6.
Geng
,
Y.
,
Dalhaimer
,
P.
,
Cai
,
S.
,
Tsai
,
R.
,
Tewari
,
M.
,
Minko
,
T.
, and
Discher
,
D. E.
,
2007
, “
Shape Effects of Filaments Versus Spherical Particles in Flow and Drug Delivery
,”
Nat. Nanotechnol.
,
2
(
4
), pp.
249
255
.10.1038/nnano.2007.70
7.
He
,
C.
,
Hu
,
Y.
,
Yin
,
L.
,
Tang
,
C.
, and
Yin
,
C.
,
2010
, “
Effects of Particle Size and Surface Charge on Cellular Uptake and Biodistribution of Polymeric Nanoparticles
,”
Biomaterials
,
31
(
13
), pp.
3657
3666
.10.1016/j.biomaterials.2010.01.065
8.
Merkel
,
T. J.
,
Jones
,
S. W.
,
Herlihy
,
K. P.
,
Kersey
,
F. R.
,
Shields
,
A. R.
,
Napier
,
M.
,
Luft
,
J. C.
,
Wu
,
H.
,
Zamboni
,
W. C.
,
Wang
,
A. Z.
,
Bear
,
J. E.
, and
DeSimone
,
J. M.
,
2011
, “
Using Mechanobiological Mimicry of Red Blood Cells to Extend Circulation Times of Hydrogel Microparticles
,”
Proc. Natl. Acad. Sci. USA
,
108
(
2
), pp.
586
591
.10.1073/pnas.1010013108
9.
Champion
,
J. A.
, and
Mitragotri
,
S.
,
2006
, “
Role of Target Geometry in Phagocytosis
,”
Proc. Natl. Acad. Sci. USA
,
103
(
13
), pp.
4930
4934
.10.1073/pnas.0600997103
10.
Gratton
,
S. E. A.
,
Ropp
,
P. A.
,
Pohlhaus
,
P. D.
,
Luft
,
J. C.
,
Madden
,
V. J.
,
Napier
,
M. E.
, and
DeSimone
,
J. M.
,
2008
, “
The Effect of Particle Design on Cellular Internalization Pathways
,”
Proc. Natl. Acad. Sci. USA
,
105
(
33
), pp.
11613
11618
.10.1073/pnas.0801763105
11.
Rejman
,
J.
,
Oberle
,
V.
,
Zuhorn
,
I. S.
, and
Hoekstra
,
D.
,
2004
, “
Size-Dependent Internalization of Particles via the Pathways of Clathrin- and Caveolae-Mediated Endocytosis
,”
Biochem. J.
,
377
(
1
) pp.
159
169
.10.1042/BJ20031253
12.
Yang
,
K.
, and
Ma
,
Y.-Q.
,
2010
, “
Computer Simulation of the Translocation of Nanoparticles With Different Shapes Across a Lipid Bilayer
,”
Nat. Nanotechnol.
,
5
(
8
), pp.
579
583
.10.1038/nnano.2010.141
13.
Agarwal
,
R.
,
Singh
,
V.
,
Jurney
,
P.
,
Shi
,
L.
,
Sreenivasan
,
S. V.
, and
Roy
,
K.
,
2013
, “
Mammalian Cells Preferentially Internalize Hydrogel Nanodiscs Over Nanorods and Use Shape-Specific Uptake Mechanisms
,”
Proc. Natl. Acad. Sci.
,
110
(
43
), pp.
17247
17252
.10.1073/pnas.1305000110
14.
Moriyama
,
K.
, and
Yui
,
N.
,
1996
, “
Regulated Insulin Release From Biodegradable Dextran Hydrogels Containing Poly(Ethylene Glycol)
,”
J. Controlled Release
,
42
(
3
), pp.
237
248
.10.1016/0168-3659(96)01456-3
15.
Ilium
,
L.
,
Davis
,
S. S.
,
Wilson
,
C. G.
,
Thomas
,
N. W.
,
Frier
,
M.
, and
Hardy
,
J. G.
,
1982
, “
Blood Clearance and Organ Deposition of Intravenously Administered Colloidal Particles. The Effects of Particle Size, Nature and Shape
,”
Int. J. Pharm.
,
12
(
2–3
), pp.
135
146
.10.1016/0378-5173(82)90113-2
16.
Decuzzi
,
P.
,
Pasqualini
,
R.
,
Arap
,
W.
, and
Ferrari
,
M.
,
2009
, “
Intravascular Delivery of Particulate Systems: Does Geometry Really Matter?
,”
Pharm. Res.
,
26
(
1
), pp.
235
243
.10.1007/s11095-008-9697-x
17.
Matsumura
,
Y.
, and
Maeda
,
H.
,
1986
, “
A New Concept for Macromolecular Therapeutics in Cancer Chemotherapy: Mechanism of Tumoritropic Accumulation of Proteins and the Antitumor Agent Smancs
,”
Cancer Res.
,
46
(
12 Pt 1
), pp.
6387
6392
.
18.
Decuzzi
,
P.
,
Lee
,
S.
,
Bhushan
,
B.
, and
Ferrari
,
M.
,
2005
, “
A Theoretical Model for the Margination of Particles Within Blood Vessels
,”
Ann. Biomed. Eng.
,
33
(
2
), pp.
179
190
.10.1007/s10439-005-8976-5
19.
Shah
,
S.
,
Liu
,
Y.
,
Hu
,
W.
, and
Gao
,
J.
,
2011
, “
Modeling Particle Shape-Dependent Dynamics in Nanomedicine
,”
J. Nanosci. Nanotechnol.
,
11
(
2
), pp.
919
928
.10.1166/jnn.2011.3536
20.
Safeukui
,
I.
,
Correas
,
J.-M.
,
Brousse
,
V.
,
Hirt
,
D.
,
Deplaine
,
G.
,
Mulé
,
S.
,
Lesurtel
,
M.
,
Goasguen
,
N.
,
Sauvanet
,
A.
,
Couvelard
,
A.
,
Kerneis
,
S.
,
Khun
,
H.
,
Vigan-Womas
,
I.
,
Ottone
,
C.
,
Molina
,
T. J.
,
Tréluyer
,
J.-M.
,
Mercereau-Puijalon
,
O.
,
Milon
,
G.
,
David
,
P. H.
, and
Buffet
,
P. A.
,
2008
, “
Retention of Plasmodium falciparum Ring-Infected Erythrocytes in the Slow, Open Microcirculation of the Human Spleen
,”
Blood
,
112
(
6
), pp.
2520
2528
.10.1182/blood-2008-03-146779
21.
Singh
,
R.
,
Pantarotto
,
D.
,
Lacerda
,
L.
,
Pastorin
,
G.
,
Klumpp
,
C.
,
Prato
,
M.
,
Bianco
,
A.
, and
Kostarelos
,
K.
,
2006
, “
Tissue Biodistribution and Blood Clearance Rates of Intravenously Administered Carbon Nanotube Radiotracers
,”
Proc. Natl. Acad. Sci. USA
,
103
(
9
), pp.
3357
3362
.10.1073/pnas.0509009103
22.
Mitragotri
,
S.
, and
Lahann
,
J.
,
2009
, “
Physical Approaches to Biomaterial Design
,”
Nat. Mater.
,
8
(
1
), pp.
15
23
.10.1038/nmat2344
23.
Agarwal
,
R.
,
Singh
,
V.
,
Jurney
,
P.
,
Shi
,
L.
,
Sreenivasan
,
S. V.
, and
Roy
,
K.
,
2012
, “
Scalable Imprinting of Shape-Specific Polymeric Nanocarriers Using a Release Layer of Switchable Water Solubility
,”
ACS Nano
,
6
(
3
), pp.
2524
2531
.10.1021/nn2049152
24.
Glangchai
,
L. C.
,
Caldorera-Moore
,
M.
,
Shi
,
L.
, and
Roy
,
K.
,
2008
, “
Nanoimprint Lithography Based Fabrication of Shape-Specific, Enzymatically-Triggered Smart Nanoparticles
,”
J. Controlled Release
,
125
(
3
), pp.
263
272
.10.1016/j.jconrel.2007.10.021
25.
Rolland
,
J. P.
,
Hagberg
,
E. C.
,
Denison
,
G. M.
,
Carter
,
K. R.
, and
De Simone
,
J. M.
,
2004
, “
High-Resolution Soft Lithography: Enabling Materials for Nanotechnologies
,”
Angew. Chem. Int. Ed.
,
43
(
43
), pp.
5796
5799
.10.1002/anie.200461122
26.
Kim
,
K.-D.
,
Kwon
,
H.-J.
,
Choi
,
D.-G.
,
Jeong
,
J.-H.
, and
Lee
,
E.-S.
,
2008
, “
Resist Flow Behavior in Ultraviolet Nanoimprint Lithography as a Function of Contact Angle With Stamp and Substrate
,”
Jpn. J. Appl. Phys.
,
47
(
11
), pp.
8648
8651
.10.1143/JJAP.47.8648
27.
Sreenivasan
,
S. V.
,
Choi
,
J.
,
Schumaker
,
P.
, and
Xu
,
F.
,
2010
, “
Status of UV Lithography for Nanoscale Manufacturing
,”
Handbook of Nanofabriation
,
G. P.
Wiederrecht
, ed.,
Elsevier BV
,
Amsterdam, The Netherlands
, pp.
149
182
.
28.
Xu
,
F.
,
Stacey
,
N. A.
,
Watts
,
M.
,
Truskett
,
V.
,
McMackin
,
I.
,
Choi
,
J.
,
Schumaker
,
P.
,
Thompson
,
E.
,
Babbs
,
D.
,
Sreenivasa
,
S. V.
,
Willson
,
G. C.
, and
Shumaker
,
N.
,
2004
, “
Development of Imprint Materials for the Step and Flash Imprint Lithography Process
,”
Proceedings of SPIE
, Vol. 5374.10.1117/12.538734
29.
Edsberg
,
L. E.
,
Mates
,
R. E.
,
Baier
,
R. E.
, and
Lauren
,
M.
,
1999
, “
Mechanical Characteristics of Human Skin Subjected to Static Versus Cyclic Normal Pressures
,”
J. Rehab. Res. Dev.
,
36
(
2
), pp.
133
141
.
30.
Subramanian
,
A.
, and
Lin
,
H.-Y.
,
2005
, “
Crosslinked Chitosan: Its Physical Properties and the Effects of Matrix Stiffness on Chondrocyte Cell Morphology and Proliferation
,”
J. Biomed. Mater. Res. Part A
,
75A
(
3
), pp.
742
753
.10.1002/jbm.a.30489
31.
Doshi
,
N.
,
Zahr
,
A. S.
,
Bhaskar
,
S.
,
Lahann
,
J.
, and
Mitragotri
,
S.
,
2009
, “
Red Blood Cell-Mimicking Synthetic Biomaterial Particles
,”
Proc. Natl. Acad. Sci.
,
106
(
51
), pp.
21495
21499
.10.1073/pnas.0907127106
32.
Hochmuth
,
R. M.
,
Mohandas
,
N.
, and
Blackshear
,
J. P. L.
,
1973
, “
Measurement of the Elastic Modulus for Red Cell Membrane Using a Fluid Mechanical Technique
,”
Biophys. J.
,
13
(
8
), pp.
747
762
.10.1016/S0006-3495(73)86021-7
33.
Colburn
,
M.
,
Johnson
,
S.
,
Stewart
,
M.
,
Damle
,
S.
,
Bailey
,
T.
,
Choi
,
B.
,
Schumaker
,
P.
,
Thompson
,
E.
,
Babbs
,
D.
,
Sreenivasan
,
S. V.
,
Willson
,
C. G.
, and
Schumaker
,
N.
,
1999
, “
Step and Flash Imprint Lithography: A New Approach to High Resolution Patterning
,”
Proceedings of SPIE
, Vol. 3676(I), pp.
379
389
.10.1117/12.351155
34.
Gratton
,
S. E. A.
,
Pohlhaus
,
P. D.
,
Lee
,
J.
,
Guo
,
J.
,
Cho
,
M. J.
, and
DeSimone
,
J. M.
,
2007
, “
Nanofabricated Particles for Engineered Drug Therapies: A Preliminary Biodistribution Study of PRINTTM Nanoparticles
,”
J. Controlled Release
,
121
(
1–2
), pp.
10
18
.10.1016/j.jconrel.2007.05.027
35.
Peppas
,
N. A.
,
Hilt
,
J. Z.
,
Khademhosseini
,
A.
, and
Langer
,
R.
,
2006
, “
Hydrogels in Biology and Medicine: From Molecular Principles to Bionanotechnology
,”
Adv. Mater.
,
18
(
11
), pp.
1345
1360
.10.1002/adma.200501612
36.
Guo
,
D.
,
Xie
,
G.
, and
Luo
,
J.
,
2014
, “
Mechanical Properties of Nanoparticles: Basics and Applications
,”
J. Phys. D: Appl. Phys.
,
47
(
1
), p.
013001
.10.1088/0022-3727/47/1/013001
37.
Wampler
,
H. P.
, and
Ivanisevic
,
A.
,
2009
, “
Nanoidentation of Gold Nanoparticles Fucntionalized With Protiens
,”
Micron
,
40
(
4
), pp.
444
448
.10.1016/j.micron.2009.01.002
38.
Ebenstein
,
D. M.
, and
Pruitt
,
L. A.
,
2006
, “
Nanoidentation of Biological Materials
,”
Nanotoday
,
1
(
3
), pp.
26
33
.10.1016/S1748-0132(06)70077-9
39.
Glassmaker
,
N. J.
,
Jagota
,
A.
,
Hui
,
Y.-C.
, and
Kim
,
J.
,
2004
, “
Design of Biomimetic Fibrillar Interfaces: 1. Making Contact
,”
J. R. Soc. Interface
,
1
(
1
), pp.
23
33
.10.1098/rsif.2004.0004
40.
Lee
,
T. W.
,
Mitrofanov
,
O.
, and
Hsu
,
J. W. P.
,
2005
, “
Pattern-Transfer Fidelity in Soft Lithography: The Role of Pattern Density and Aspect Ratio
,”
Adv. Funct. Mater.
,
15
(
10
), pp.
1683
1688
.10.1002/adfm.200400295
41.
Roca-Cusachs
,
P.
,
Rico
,
F.
,
Martínez
,
E.
,
Toset
,
J.
,
Farré
,
R.
, and
Navajas
,
D.
,
2005
, “
Stability of Microfabricated High Aspect Ratio Structures in Poly(dimethylsiloxane)
,”
Langmuir
,
21
(
12
), pp.
5542
5548
.10.1021/la046931w
42.
Tanaka
,
T.
,
Morigami
,
M.
, and
Atoda
,
N.
,
1999
, “
Mechanism of Resist Pattern Collapse During Development Process
,”
Jpn. J. Appl. Phys.
,
32
(
Part 1, No. 12B
), pp.
6059
6064
.10.1143/JJAP.32.6059
43.
Zhang
,
Y.
,
Lo
,
C.-W.
,
Taylor
,
J. A.
, and
Yang
,
S.
,
2006
, “
Replica Molding of High-Aspect-Ratio Polymeric Nanopillar Arrays With High Fidelity
,”
Langmuir
,
22
(
20
), pp.
8595
8601
.10.1021/la061372+
44.
Cross
,
G. L. W.
,
O'Connell
,
B.
,
Pethica
,
J. B.
, and
Oliver
,
W.
,
2003
, “
Mechanical Aspects of Nanoimprint Patterning
,” 3rd
IEEE
Conference on Nanotechnology
, Vol.
2
, San Francisco, CA, Aug. 12–14, pp.
494
497
.10.1109/NANO.2003.1230954
45.
Rolland
,
J. P.
,
Maynor
,
B. W.
,
Euliss
,
L. E.
,
Exner
,
A. E.
,
Denison
,
G. M.
, and
DeSimone
,
J. M.
,
2005
, “
Direct Fabrication and Harvesting of Monodisperse, Shape-Specific Nanobiomaterials
,”
J. Am. Chem. Soc.
,
127
(
28
), pp.
10096
10100
.10.1021/ja051977c
46.
Buyukserin
,
F.
,
Aryal
,
M.
,
Gao
,
J.
, and
Hu
,
W.
,
2009
, “
Fabrication of Polymeric Nanorods Using Bilayer Nanoimprint Lithography
,”
Small
,
5
(
14
), pp.
1632
1636
.10.1002/smll.200801822
47.
Acharya
,
G.
,
Shin
,
C. S.
,
McDermott
,
M.
,
Mishra
,
H.
,
Park
,
H.
,
Kwon
,
I. C.
, and
Park
,
K.
,
2010
, “
The Hydrogel Template Method for Fabrication of Homogeneous Nano/Microparticles
,”
J. Controlled Release
,
141
(
3
), pp.
314
319
.10.1016/j.jconrel.2009.09.032
48.
Ho
,
C. C.
,
Keller
,
A.
,
Odell
,
J. A.
, and
Ottewill
,
R. H.
,
1993
, “
Preparation of Monodisperse Ellipsoidal Polystyrene Particles
,”
Colloid Polym. Sci.
,
271
(
5
), pp.
469
479
.10.1007/BF00657391
49.
Deguchi
,
K.
,
Takeuchi
,
N.
, and
Shimizu
,
A.
,
2002
, “
Evaluation of Pressure Uniformity Using a Pressure-Sensitive Film and Calculation of Wafer Distortions Caused by Mold Press in Imprint Lithography
,”
Jpn. J. Appl. Phys.
,
41
, pp.
4178
4181
.10.1143/JJAP.41.4178
50.
Krebs
,
F. C.
,
2008
, “
Fabrication and Processing of Polymer Solar Cells: A Review of Printing and Coating Techniques
,”
Sol. Energy Mater. Sol. Cells
,
93
(
4
), pp.
394
412
.10.1016/j.solmat.2008.10.004
51.
Flamm
,
D. L.
, and
Herb
,
G. K.
,
1989
, “
Plasma Etching Technology—An Overview
,”
Plasma Etching an Introduction
,
D. M.
Manos
and
D. L.
Fann
,
Academic Press
,
San Diego, CA
, pp.
2
87
, Chap. 1.
52.
Caldorera-Moore
,
M.
,
Kang
,
M. K.
,
Moore
,
Z.
,
Singh
,
V.
,
Sreenivasan
,
S. V.
,
Shi
,
L.
,
Huang
,
R.
, and
Roy
,
K.
,
2011
, “
Swelling Behavior of Nanoscale, Shape- and Size-Specific, Hydrogel Particles Fabricated Using Imprint Lithography
,”
Soft Matter
,
7
(
6
), pp.
2879
2887
.10.1039/c0sm01185a
53.
Hui
,
C. Y.
,
Jagota
,
A.
,
Lin
,
Y. Y.
, and
Kramer
,
E. J.
,
2002
, “
Constraints on Microcontact Imprinting Imposed by Stamp Deformation
,”
Langmuir
,
18
(
4
), pp.
1394
1407
.10.1021/la0113567
You do not currently have access to this content.