Vibration assisted nano-impact-machining by loose abrasives (VANILA) is a novel target specific nano-abrasive machining process wherein, nano-abrasives, injected in slurry between the workpiece and the vibrating atomic force microscope probe, impact the workpiece causing nanoscale material removal. In this study, a molecular dynamics (MD) based simulation approach is used to investigate the tool wear mechanism. The simulation results reveal that the tool wear is influenced by the impact velocity of the abrasive grains and the effective tool tip radius. It is seen that based on the process conditions, the wear process could happen through distinctive mechanisms such as atom-by-atom loss, plastic deformation, and brittle fracture. Experimental results show evidences of tool wear by aforementioned mechanisms in VANILA process.

References

References
1.
Sundaram
,
M. M.
, and
James
,
S.
,
2011
, “
Vibration Assisted Nano Abrasive Machining
,”
7th International Conference on Precision, Meso, Micro and Nano Engineering (COPEN)
, College of Engineering, Pune, India, Dec. 10–11, pp. 20–25.
2.
James
,
S.
, and
Sundaram
,
M. M.
,
2012
, “
A Feasibility Study of Vibration-Assisted Nano-Impact Machining by Loose Abrasives Using Atomic Force Microscope
,”
ASME J. Manuf. Sci. Eng.
,
134
(
6
), p.
061014
.10.1115/1.4007714
3.
James
,
S.
, and
Sundaram
,
M. M.
,
2013
, “
A Molecular Dynamics Study of the Effect of Impact Velocity, Particle Size and Angle of Impact of Abrasive Grain in the Vibration Assisted Nano Impact-Machining by Loose Abrasives
,”
Wear
,
303
(
1
), pp.
510
518
.10.1016/j.wear.2013.03.039
4.
Agrawal
,
R.
,
Moldovan
,
N.
, and
Espinosa
,
H.
,
2009
, “
An Energy-Based Model to Predict Wear in Nanocrystalline Diamond Atomic Force Microscopy Tips
,”
J. Appl. Phys.
,
106
(
6
), p.
064311
.10.1063/1.3223316
5.
Robinson
,
G. M.
,
Jackson
,
M. J.
, and
Whitfield
,
M. D.
,
2007
, “
A Review of Machining Theory and Tool Wear With a View to Developing Micro and Nano Machining Processes
,”
J. Mater. Sci.
,
42
(
6
), pp.
2002
2015
.10.1007/s10853-006-0171-z
6.
Lane
,
B. M.
,
2012
, “
Material Effects and Tool Wear in Vibration Assisted Machining
,” Ph.D. dissetation, North Carolina State University, Raleigh, NC.
7.
Cai
,
M.
,
Li
,
X.
, and
Rahman
,
M.
,
2007
, “
Characteristics of Dynamic Hard Particles in Nanoscale Ductile Mode Cutting of Monocrystalline Silicon With Diamond Tools in Relation to Tool Groove Wear
,”
Wear
,
263
(
7
), pp.
1459
1466
.10.1016/j.wear.2006.11.030
8.
Liu
,
J.
,
Notbohm
,
J. K.
,
Carpick
,
R. W.
, and
Turner
,
K. T.
,
2010
, “
Method for Characterizing Nanoscale Wear of Atomic Force Microscope Tips
,”
ACS Nano
,
4
(
7
), pp.
3763
3772
.10.1021/nn100246g
9.
Bhaskaran
,
H.
,
Gotsmann
,
B.
,
Sebastian
,
A.
,
Drechsler
,
U.
,
Lantz
,
M. A.
,
Despont
,
M.
,
Jaroenapibal
,
P.
,
Carpick
,
R. W.
,
Chen
,
Y.
, and
Sridharan
,
K.
,
2010
, “
Ultralow Nanoscale Wear Through Atom-By-Atom Attrition in Silicon-Containing Diamond-Like Carbon
,”
Nat. Nanotechnol.
,
5
(
3
), pp.
181
185
.10.1038/nnano.2010.3
10.
Kim
,
H. J.
,
Yoo
,
S. S.
, and
Kim
,
D. E.
,
2012
, “
Nano-Scale Wear: A Review
,”
Int. J. Precis. Eng. Manuf.
,
13
(
9
), pp.
1709
1718
.10.1007/s12541-012-0224-y
11.
Bassani
,
R.
, and
D'Acunto
,
M.
,
2000
, “
Nanotribology: Tip–Sample Wear Under Adhesive Contact
,”
Tribol. Int.
,
33
(
7
), pp.
443
452
.10.1016/S0301-679X(00)00028-1
12.
Colaço
,
R.
,
2009
, “
An AFM Study of Single-Contact Abrasive Wear: The Rabinowicz Wear Equation Revisited
,”
Wear
,
267
(
11
), pp.
1772
1776
.10.1016/j.wear.2008.12.024
13.
D'Acunto
,
M.
,
2004
, “
Theoretical Approach for the Quantification of Wear Mechanisms on the Nanoscale
,”
Nanotechnology
,
15
(
7
), pp.
795
801
.10.1088/0957-4484/15/7/014
14.
Cleveland
,
J.
,
Anczykowski
,
B.
,
Schmid
,
A.
, and
Elings
,
V.
,
1998
, “
Energy Dissipation in Tapping-Mode Atomic Force Microscopy
,”
Appl. Phys. Lett.
,
72
(
20
), pp.
2613
2615
.10.1063/1.121434
15.
Chung
,
K. H.
,
Lee
,
Y. H.
, and
Kim
,
D. E.
,
2005
, “
Characteristics of Fracture During the Approach Process and Wear Mechanism of a Silicon AFM Tip
,”
Ultramicroscopy
,
102
(
2
), pp.
161
171
.10.1016/j.ultramic.2004.09.009
16.
Bloo
,
M.
,
Haitjema
,
H.
, and
Pril
,
W.
,
1999
, “
Deformation and Wear Of Pyramidal, Silicon–Nitride AFM Tips Scanning Micrometre-Size Features in Contact Mode
,”
Measurement
,
25
(
3
), pp.
203
211
.10.1016/S0263-2241(99)00004-4
17.
Bhushan
,
B.
, and
Kwak
,
K. J.
,
2007
, “
Platinum-Coated Probes Sliding at up to 100 Mm S−1 Against Coated Silicon Wafers for AFM Probe-Based Recording Technology
,”
Nanotechnology
,
18
(
34
), p.
345504
.10.1088/0957-4484/18/34/345504
18.
Khurshudov
,
A.
, and
Kato
,
K.
,
1995
, “
Wear of the Atomic Force Microscope Tip Under Light Load, Studied by Atomic Force Microscopy
,”
Ultramicroscopy
,
60
(
1
), pp.
11
16
.10.1016/0304-3991(95)00071-8
19.
Chung
,
K. H.
, and
Kim
,
D. E.
,
2007
, “
Wear Characteristics of Diamond-Coated Atomic Force Microscope Probe
,”
Ultramicroscopy
,
108
(
1
), pp.
1
10
.10.1016/j.ultramic.2007.01.016
20.
Skårman
,
B.
,
Wallenberg
,
L. R.
,
Jacobsen
,
S. N.
,
Helmersson
,
U.
, and
Thelander
,
C.
,
2000
, “
Evaluation of Intermittent Contact Mode AFM Probes by HREM and Using Atomically Sharp CeO2 Ridges as Tip Characterizer
,”
Langmuir
,
16
(
15
), pp.
6267
6277
.10.1021/la000078t
21.
Wong
,
T.
,
Kim
,
W.
, and
Kwon
,
P.
,
2004
, “
Experimental Support for a Model-Based Prediction of Tool Wear
,”
Wear
,
257
(
7
), pp.
790
798
.10.1016/j.wear.2004.03.010
22.
Cheng
,
K.
,
Luo
,
X.
,
Ward
,
R.
, and
Holt
,
R.
,
2003
, “
Modeling and Simulation of the Tool Wear in Nanometric Cutting
,”
Wear
,
255
(
7–12
), pp.
1427
1432
.10.1016/S0043-1648(03)00178-9
23.
Maekawa
,
K.
, and
Itoh
,
A.
,
1995
, “
Friction and Tool Wear in Nano-Scale Machining—A Molecular Dynamics Approach
,”
Wear
,
188
(
1
), pp.
115
122
.10.1016/0043-1648(95)06633-0
24.
Lu
,
C.
,
Gao
,
Y.
,
Michal
,
G.
,
Huynh
,
N.
,
Zhu
,
H.
, and
Tieu
,
A.
,
2009
, “
Atomistic Simulation of Nanoindentation of Iron With Different Indenter Shapes
,”
Proc. Inst. Mech. Eng., Part J
,
223
(
7
), pp.
977
984
.10.1243/13506501JET594
25.
Komvopoulos
,
K.
, and
Yan
,
W.
,
1997
, “
Molecular Dynamics Simulation of Single and Repeated Indentation
,”
J. Appl. Phys.
,
82
(
10
), pp.
4823
4830
.10.1063/1.366342
26.
Zhu
,
P.
,
Hu
,
Y.
,
Wang
,
H.
, and
Ma
,
T.
,
2011
, “
Study of Effect of Indenter Shape in Nanometric Scratching Process Using Molecular Dynamics
,”
Mater. Sci. Eng. A
,
528
(
13
), pp.
4522
4527
.10.1016/j.msea.2011.02.035
27.
Mylvaganam
,
K.
, and
Zhang
,
L. C.
,
2009
, “
Scale Effect of Nano-Indentation of Silicon—A Molecular Dynamics Investigation
,”
Key Eng. Mater.
,
389
, pp.
521
526
.10.4028/www.scientific.net/KEM.389-390.521
28.
Gotsmann
,
B.
, and
Lantz
,
M. A.
,
2008
, “
Atomistic Wear in a Single Asperity Sliding Contact
,”
Phys. Rev. Lett.
,
101
(
12
), p.
125501
.10.1103/PhysRevLett.101.125501
29.
Goel
,
S.
,
Luo
,
X.
, and
Reuben
,
R. L.
,
2012
, “
Molecular Dynamics Simulation Model for the Quantitative Assessment of Tool Wear During Single Point Diamond Turning of Cubic Silicon Carbide
,”
Comput. Mater. Sci.
,
51
(
1
), pp.
402
408
.10.1016/j.commatsci.2011.07.052
30.
Cheong
,
W. C. D.
, and
Zhang
,
L.
,
2000
, “
Effect of Repeated Nano-Indentations on the Deformation in Monocrystalline Silicon
,”
J. Mater. Sci. Lett.
,
19
(
5
), pp.
439
442
.10.1023/A:1006707325288
31.
Kang
,
K.
, and
Cai
,
W.
,
2007
, “
Brittle and Ductile Fracture of Semiconductor Nanowires—Molecular Dynamics Simulations
,”
Philos. Mag.
,
87
(
14–15
), pp.
2169
2189
.10.1080/14786430701222739
32.
Tersoff
,
J.
,
1989
, “
Modeling Solid-State Chemistry: Interatomic Potentials for Multicomponent Systems
,”
Phys. Rev. B
,
39
(
8
), pp.
5566
5568
.10.1103/PhysRevB.39.5566
33.
Inamura
,
T.
,
Shishikura
,
Y.
, and
Takezawa
,
N.
,
2010
, “
Mechanism of Ring Crack Initiation in Hertz Indentation of Monocrystalline Silicon Analyzed by Controlled Molecular Dynamics
,”
CIRP Ann. Manuf. Technol.
,
59
(
1
), pp.
559
562
.10.1016/j.cirp.2010.03.139
34.
Cai
,
M.
,
Li
,
X.
,
Rahman
,
M.
, and
Tay
,
A.
,
2007
, “
Crack Initiation in Relation to the Tool Edge Radius and Cutting Conditions in Nanoscale Cutting of Silicon
,”
Int. J. Mach. Tools Manuf.
,
47
(
3
), pp.
562
569
.10.1016/j.ijmachtools.2006.05.006
35.
Luo
,
X.
,
Goel
,
S.
, and
Reuben
,
R. L.
,
2012
, “
A Quantitative Assessment of Nanometric Machinability of Major Polytypes of Single Crystal Silicon Carbide
,”
J. Eur. Ceram. Soc
,
32
(
12
), pp.
3423
3434
.10.1016/j.jeurceramsoc.2012.04.016
36.
Tanaka
,
H.
,
Shimada
,
S.
, and
Anthony
,
L.
,
2007
, “
Requirements for Ductile-Mode Machining Based on Deformation Analysis of Mono-Crystalline Silicon by Molecular Dynamics Simulation
,”
CIRP Ann. Manuf. Technol.
,
56
(
1
), pp.
53
56
.10.1016/j.cirp.2007.05.015
37.
Komanduri
,
N. C. L. M. R.
,
2001
, “
Molecular Dynamics Simulation of the Nanometric Cutting of Silicon
,”
Plant Ecol. Diversity
,
81
(
12
), pp.
1989
2019
.10.1080/13642810108208555
38.
Inamura
,
T.
,
Takezawa
,
N.
, and
Shimada
,
S.
,
2002
, “
Importance of Micro/Macro Interaction in the Mechanism of Brittle Mode Cutting
,”
CIRP Ann. Manuf. Technol.
,
51
(
1
), pp.
487
490
.10.1016/S0007-8506(07)61567-4
39.
Cheong
,
W.
, and
Zhang
,
L.
,
2000
, “
Molecular Dynamics Simulation of Phase Transformations in Silicon Monocrystals Due to Nano-Indentation
,”
Nanotechnology
,
11
(
3
), pp.
173
180
.10.1088/0957-4484/11/3/307
40.
Mattoni
,
A.
,
Ippolito
,
M.
, and
Colombo
,
L.
,
2007
, “
Atomistic Modeling of Brittleness in Covalent Materials
,”
Phys. Rev. B
,
76
(
22
), p.
224103
.10.1103/PhysRevB.76.224103
41.
Buehler
,
M. J.
,
2008
, Atomistic Modeling of Materials Failure, Springer, New York.
42.
Holland
,
D. J. M.
, and
Marder
,
M.
,
1999
, “
Cracks and Atoms
,”
Adv. Mater.
,
11
(
10
), pp.
793
806
.10.1002/(SICI)1521-4095(199907)11:10<793::AID-ADMA793>3.0.CO;2-B
43.
Plimpton
,
S.
,
1995
, “
Fast Parallel Algorithms for Short-Range Molecular Dynamics
,”
J. Comput. Phys.
,
117
(
1
), pp.
1
19
.10.1006/jcph.1995.1039
44.
Abdel-Al
,
H. A.
, and
Smith
,
S. T.
, “
Thermal Modeling of Silicon Machining—Issues and Challenges
,”
Proceedings of the ASPE Spring Topical Meeting: Silicon Machining
, Carmel-by-the Sea, CA, Apr. 13–16, pp.
27
31
.
45.
Rhee
,
Y. W.
,
Kim
,
H. W.
,
Deng
,
Y.
, and
Lawn
,
B. R.
,
2001
, “
Brittle Fracture Versus Quasi Plasticity in Ceramics: A Simple Predictive Index
,”
J. Am. Ceram. Soc.
,
84
(
3
), pp.
561
565
.10.1111/j.1151-2916.2001.tb00698.x
46.
Johnson
,
K. L.
,
1987
,
Contact Mechanics
,
Cambridge University
,
Cambridge, MA
.
You do not currently have access to this content.