This paper reports an investigation of material microstructure effects on tool wear in microscale machining of multiphase materials. A new generic approach is proposed to estimate the tool wear that utilizes empirical data about the effects of micromilling process on cutting edge radius. Experiments were conducted to study independently the influence of two main phases in steel, pearlite and ferrite, on tool wear under different cutting conditions. Based on this empirical data, two regression models were created to estimate the increase of cutting edge radius when machining single and multiphase steels. To validate the models they were applied to predict the tool wear when machining two different multiphase steel samples. The results showed a good agreement between the estimated and the actual tool wear.

References

References
1.
Liu
,
X.
,
Devor
,
R. E.
,
Kapoor
,
S. G.
, and
Ehmann
,
K. F.
,
2004
, “
The Mechanics of Machining at the Microscale: Assessment of the Current State of the Science
,”
ASME J. Manuf. Sci. Eng.
,
126
(
4
), pp.
666
678
.10.1115/1.1813469
2.
Chae
,
J.
,
Park
,
S. S.
, and
Freiheit
,
T.
,
2006
, “
Investigation of Micro-Cutting Operations
,”
Int. J. Mach. Tools Manuf.
,
46
(
3-4
), pp.
313
332
.10.1016/j.ijmachtools.2005.05.015
3.
Liu
,
K.
, and
Melkote
,
S. N.
,
2006
, “
Effect of Plastic Side Flow on Surface Roughness in Micro-Turning Process
,”
Int. J. Mach. Tools Manuf.
,
46
(
14
), pp.
1778
1785
.10.1016/j.ijmachtools.2005.11.014
4.
Vogler
,
M.
,
Kapoor
,
S.
, and
Devor
,
R.
,
2004
, “
On the Modeling and Analysis of Machining Performance in Microendmiling, Part 1: Surface Generation
,”
ASME J. Manuf. Sci. Eng.
,
126
(4), pp.
685
694
.10.1115/1.1813470
5.
Furukawa
,
Y.
, and
Moronuki
,
N.
,
1988
, “
Effect of Material Properties on Ultraprecise Cutting Processes
,”
CIRP Ann.
,
37
(
1
), pp.
113
116
.10.1016/S0007-8506(07)61598-4
6.
Weule
,
H.
,
Huntrup
,
V.
, and
Tritschle
,
H.
,
2001
, “
Micro-Cutting of Steel to Meet New Requirements in Miniaturisation
,”
CIRP Ann.
,
50
(
1
), pp.
61
64
.10.1016/S0007-8506(07)62071-X
7.
Vogler
,
M.
,
Kapoor
,
S.
, and
Devor
,
R.
,
2004
, “
On the Modeling and Analysis of Machining Performance in Micro-Endmiling, Part 2: Cutting Force Prediction
,”
ASME J. Manuf. Sci. Eng.
,
126
(
4
), pp.
695
705
.10.1115/1.1813471
8.
Uhlmann
,
E.
,
Piltz
,
S.
, and
Schauer
,
K.
,
2005
, “
Micro Milling of Sintered Tungsten–Copper Composite Materials
,”
J. Mater. Process. Technol.
,
167
(
2–3
), pp.
402
407
.10.1016/j.jmatprotec.2005.05.022
9.
Popov
,
K. B.
,
Dimov
,
S. S.
,
Pham
,
D. T.
,
Minev
,
R. M.
,
Rosochowski
,
A.
, and
Olejnik
,
L.
,
2006
, “
Micro-Milling: Material Microstructure Effects
,”
Proc. Inst. Mech. Eng., Part B
,
220
(
11
), pp.
1807
1813
.10.1243/09544054JEM683
10.
Simoneau
,
A.
,
Ng
,
E.
, and
Elbestawi
,
M. A.
,
2006
, “
Surface Defects During Microcutting
,”
Int. J. Mach. Tools Manuf.
,
46
(
12–13
), pp.
1378
1387
.10.1016/j.ijmachtools.2005.10.001
11.
Wang
,
J.
,
Gong
,
Y.
,
Abba
,
G.
,
Chen
,
K.
,
Shi
,
J.
, and
Cai
,
G.
,
2008
, “
Surface Generation Analysis in Micro End Milling Considering the Influences of Grain
,”
J. Microsystem Technologies
,
14
(7), pp.
937
942
. 10.1007/s00542-007-0478-y
12.
Aramcharoen
,
A.
, and
Mativenga
,
P. T.
,
2009
, “
Evaluation of Critical Parameters in Micro Machining of Hardened Tool Steel
,”
Int. J. Nanomanuf.
,
3
(
1
), pp.
100
111
.10.1504/IJNM.2009.027053
13.
Mian
,
A.
, and
Mativenga
,
P. T.
,
2009
, “
Micromachining of Coarse Grained Multi-Phase Material
,”
Proc. Inst. Mech. Eng., Part B
,
223
(
4
), pp.
377
385
.10.1243/09544054JEM1185
14.
Mian
,
A.
,
Driver
,
N.
, and
Mativenga
,
P. T.
,
2010
, “
A Comparative Study of Material Phase Effects on Micro-Machinability of Multiphase Materials
,”
Int. J. Adv. Manuf. Technol.
,
50
(
1-4),
pp.
163
174
.10.1007/s00170-009-2506-9
15.
Goo
,
C.
,
Menard
,
M.
,
Huynh
,
L. H.
,
Papadopoulos
,
C.
,
Park
,
S. S.
, and
Jun
,
M. B. G.
,
2010
, “
Micromachining of Polymer Composites Reinforced With Single-Walled Carbon Nano-Tubes
,” Proceedings of the 5th Int. Conf. on Micro-Manufacturing (ICOMM/4M), Madison, WI, April 5–8, pp.
417
422
.
16.
Kota
,
N.
, and
Ozdoganlar
,
B.
,
2010
, “
Machining Force and Surface Finish Variation Across Grains During Orthogonal Micromachining of Aluminum
,” Proceedings of the 5th Int. Conf. on Micro-Manufacturing (ICOMM/4M), Madison, WI, April 5–8, pp.
133
137
.
17.
Kim
,
C.-J.
,
Bono
,
M.
, and
Ni
,
J.
,
2002
, “
Experimental Analysis of Chip Formation in Micro-Milling
,”
Trans. NAMRI/SME
,
30
(
159
), pp.
247
254
.
18.
Liu
,
X.
,
Devore
,
R. E.
, and
Kapoor
,
S. G.
,
2006
, “
An Analytical Model for the Prediction of Minimum Chip Thickness in Micromachining
,”
ASME J. Manuf. Sci. Eng.
,
128
(
2
), pp.
474
481
.10.1115/1.2162905
19.
Ikawa
,
N.
,
Shimada
,
S.
, and
Tanaka
,
H.
,
1992
, “
Minimum Thickness of Cut in Micromachining
,”
Nanotechnology
,
3
(
1
), pp.
6
9
.10.1088/0957-4484/3/1/002
20.
Dornfeld
,
D.
,
Min
,
S.
, and
Yakeuchi
,
Y.
,
2006
, “
Recent Advances in Mechanical Micromachining
,”
CIRP Ann.
,
55
(
2
), pp.
745
768
.10.1016/j.cirp.2006.10.006
21.
Kim
,
J. D.
, and
Kim
,
D. S.
,
1995
, “
Theoretical Analysis of Micro-Cutting Characteristics in Ultra-Precision Machining
,”
J. Mater. Process. Technol.
,
49
(
3–4
), pp.
387
398
.10.1016/0924-0136(94)01345-2
22.
Lucca
,
D. A.
,
Rhorer
,
R. L.
, and
Komanduri
,
R.
,
1991
, “
Energy Dissipation in the Ultraprecision Machining of Copper
,”
CIRP Ann.
,
40
(
1
), pp.
69
72
.10.1016/S0007-8506(07)61936-2
23.
Yuan
,
Z. J.
,
Zhou
,
M.
, and
Dong
,
S.
,
1996
, “
Effect of Diamond Tool Sharpness on Minimum Cutting Thickness and Cutting Surface Integrity in Ultraprecision Machining
,”
J. Mater. Process. Technol.
,
62
(
4
), pp.
327
330
.10.1016/S0924-0136(96)02429-6
24.
Kim
,
C. J.
,
Mayor
,
J. R.
, and
Ni
,
J.
,
2004
, “
A Static Model of Chip Formation in Microscale Milling
,”
ASME J. Manuf. Sci. Eng.
,
126
(
4
), pp.
710
718
.10.1115/1.1813475
25.
Lai
,
X. M.
,
Li
,
H. T.
, and
Li
,
C. F.
,
2008
, “
Modeling and Analysis of Micro Scale Milling Considering Size Effect, Micro Cutter Edge Radius and Minimum Chip Thickness
,”
Int. J. Mach. Tools Manuf.
,
48
(
1
), pp.
1
14
.10.1016/j.ijmachtools.2007.08.011
26.
Biermann
,
D.
, and
Kahnis
,
P.
,
2010
, “
Analysis and Simulation of Size Effects in Micromilling
,”
Prod. Eng.
,
4
(
1
), pp.
25
34
.10.1007/s11740-009-0201-1
27.
Li
,
H.
,
Lai
,
X.
,
Li
,
C.
,
Feng
,
H.
, and
Ni
,
J.
,
2008
, “
Modeling and Experimental Analysis of the Effects of Tool Wear, Minimum Chip Thickness and Micro Tool Geometry on the Surface Roughness in Micro-End-Milling
,”
J. Micromech. Microeng.
,
18
(
2
), p.
025006
.10.1088/0960-1317/18/2/025006
28.
Jun
,
M.
,
Devor
,
R. E.
,
Kapoor
,
S. G.
, and
Englert
,
F.
,
2008
, “
Experimental Investigation of Machinability and Tool Wear in Micro-Endmilling
,”
Trans of NAMRI/SME
,
36
, pp.
201
208
.
29.
Tansel
,
I. N.
,
Arkana
,
T. T.
,
Bao
,
W. Y.
,
Mahendrakara
,
N.
,
Shislerb
,
B.
,
Smithb
,
D.
, and
Mc Coolb
,
M.
,
2000
, “
Tool Wear Estimation in Micro-Machining: Part I: Tool Usage–Cutting Force Relationship
,”
Int. J. Mach. Tools Manuf.
,
40
(
4
), pp.
599
608
.10.1016/S0890-6955(99)00073-5
30.
Tansel
,
I. N.
,
Trujillo
,
M.
,
Nedbouyan
,
A.
,
Velez
,
C.
,
Bao
,
W. Y.
,
Arkan
,
T. T.
, and
Tansel
,
B.
,
1998
, “
Micro-End-Milling-III: Wear Estimation and Tool Breakage Detection Using Acoustic Emission Signals
,”
Int. J. Mach. Tools Manuf.
,
38
(
12
), pp.
1449
1466
.10.1016/S0890-6955(98)00017-0
31.
Tansel
,
I. N.
,
1994
, “
Identification of the Pre-Failure Phase in Microdrilling Operations With Multiple Sensors
,”
Int. J. Mach. Tools Manuf.
,
34
(
3
) pp.
351
364
.10.1016/0890-6955(94)90005-1
32.
Tansel
,
I. N.
, and
Rodriguez
,
O.
,
1992
, “
Automated Monitoring of Microdrilling Operations
,”
Trans. NAMRI/SME
,
20
, pp.
205
210
.
33.
Bao
,
W. Y.
, and
Tansel
,
I. N.
,
2000
, “
Modeling Micro-End-Milling Operations. Part I: Analytical Cutting Force Model
,”
Int. J. Mach. Tools Manuf.
,
40
(
15
), pp.
2155
2173
.10.1016/S0890-6955(00)00054-7
34.
Tlusty
,
J.
, and
MacNeil
,
P.
,
1975
, “
Dynamics of Cutting Forces in End Milling
,”
CIRP Ann.
,
24
(
1
) pp.
21
25
.
35.
Bao
,
W. Y.
, and
Tansel
,
I. N.
,
2000
, “
Modeling Micro-End-Milling Operations. Part II: Tool Run-Out
,”
Int. J. Mach. Tools Manuf.
,
40
(
15
), pp.
2175
2192
.10.1016/S0890-6955(00)00055-9
36.
Bao
,
W. Y.
, and
Tansel
,
I. N.
,
2000
, “
Modeling Micro-End-Milling Operations. Part III: Influence of Tool Wear
,”
Int. J. Mach. Tools Manuf.
,
40
(
15
), pp.
2193
2211
.10.1016/S0890-6955(00)00056-0
37.
Malekian
,
M.
,
Park
,
S.
, and
Jun
,
B. G.
,
2009
, “
Tool Wear Monitoring of Micro-Milling Operations
,”
J. Mater. Process. Technol.
,
209
(
10
), pp.
4903
4914
.10.1016/j.jmatprotec.2009.01.013
38.
Li
,
P.
,
Aristimuno
,
P.
,
Arrazola
,
P.
,
Hoogstrate
,
A. M.
,
Oosterling
,
J. A. J.
,
Langen
,
H. H.
, and
Schmidt
,
R. H.
,
2008
, “
A Study of Factors Affecting the Performance of Micro Square Endmills in Milling of Hardened Tool Steels
,” Proceedings of the Int. Conf. on Multi-Material Micro Manufacture (4M), Cardiff, UK, Sept. 9–11, pp.
221
224
.
39.
Liu
,
X.
,
DeVor
,
R. E.
, and
Kapoor
,
S. G.
,
2007
, “
A Model-Based Analysis of the Surface Generation in Micro-Endmilling. Part I: Model Development
,”
ASME J. Manuf. Sci. Eng.
,
129
(
3
), pp.
453
460
.10.1115/1.2716705
40.
Elkaseer
,
A. M.
,
Popov
,
K. B.
,
Negm
,
M.
,
Dimov
,
S. S.
, and
Minev
,
R.
,
2012
, “
Modeling the Material Microstructure Effects on the Surface Generation Process in Microendmilling of Dual-Phase Materials
,”
ASME J. Manuf. Sci. Eng.
,
134
(
4
), p.
044501
.10.1115/1.4006851
41.
Kirkup
,
L.
, and
Frenkel
,
B.
,
2006
,
An Introduction to Uncertainty in Measurement
,
Cambridge University Press
,
Cambridge, UK
.
42.
Filiz
,
S.
,
Conley
,
C.
,
Wasserman
,
M.
, and
Ozdoganlar
,
O.
,
2007
, “
An Experimental Investigation of Micromachinability of Copper 101 Using Tungsten Carbide Micro-Endmills
,”
Int. J. Machine Tools Manuf.
,
47
(
7–8
), pp.
1088
1100
.10.1016/j.ijmachtools.2006.09.024
43.
Popov
,
K.
,
Dimov
,
S.
,
Ivanov
,
A.
,
Pham
,
D. T.
, and
Gandarias
,
E.
,
2010
, “
New Tool-Workpiece Setting Up Technology for Micro-Milling
,”
Int. J. Adv. Manuf. Technol.
,
47
(
1–4
), pp.
21
27
.10.1007/s00170-009-2055-2
44.
Özel
,
T.
, and
Karpat
,
Y.
,
2005
, “
Predictive Modeling of Surface Roughness and Tool Wear in Hard Turning Using Regression and Neural Networks
,”
Int. J. Mach. Tools Manuf.
,
45
(
4–5
), pp.
467
479
.10.1016/j.ijmachtools.2004.09.007
45.
Palanisamy
,
P.
, and
Shanmugasundaram
,
S.
,
2008
, “
Modeling of Tool Wear and Surface Roughness in Hard Turning Using Regression and Artificial Neural Network
,”
Int. J. Mach. Mach. Mater.
,
4
(
1
), pp.
76
94
.10.1504/IJMMM.2008.020912
You do not currently have access to this content.