This study develops a hybrid micromanufacturing technique to fabricate extremely smooth surface finish, high aspect ratio, and complex microchannel patterns. Milling with coat and uncoated ball-end micromills in minimum quantity lubrication (MQL) is used to remove most materials to define a channel pattern. The milled channels are then electrochemically polished to required finish. Assessment of the fabricated microchannels is performed with optical microscopy, scanning electron microscopy, atomic force microscopy, and white-light interferometry. Theoretical models were derived for surface finish of ball-end milling. The predicted surface finish data agree with experimental data in mesoscale milling, but the calculated data are lower than microscale milling data due to size effects. Built-up-edges, being detrimental in micromilling, can be reduced with optimal coating and milling in MQL. When micromilling and then electrochemical polishing of 304, 316L stainless steels and NiTi alloy, this hybrid technique can repeatedly produce microchannels with average surface finish in the range of 100–300 nm.

References

References
1.
Saklakoglu
,
I. E.
, and
Kasman
,
S.
,
2011
, “
Investigation of Micro-Milling Process Parameters for Surface Roughness and Milling Depth
,”
Int. J. Adv. Manuf. Technol.
,
54
(
5–8
), pp.
567
578
.10.1007/s00170-010-2953-3
2.
Dhanorker
,
A.
, and
Özel
,
T.
,
2006
, “
An Experimental and Modeling Study on Meso/Micro End Milling Process
,”
Proceedings of the International Manufacturing Science and Engineering Conference
, Paper No. 21127.
3.
Dornfeld
,
D.
,
Min
,
S.
, and
Takeuchi
,
Y.
,
2006
, “
Recent Advances in Mechanical Micromachining
,”
CIRP Ann. Manuf. Technol.
,
55
(
2
), pp.
745
768
.10.1016/j.cirp.2006.10.006
4.
Iwata
,
K.
,
Moriwaka
,
T.
, and
Okuda
,
K.
,
1984
, “
Ultra-high Precision Diamond Cutting of Copper
,”
Mem. Fac. Eng., Kobe Univ.
,
31
, pp.
93
102
.
5.
Chae
,
J.
,
Park
,
S.
, and
Freiheit
,
T.
,
2006
, “
Investigation of Micro-Cutting Operations
,”
Int. J. Mach. Tools Manuf.
,
46
(
3–4
), pp.
313
332
.10.1016/j.ijmachtools.2005.05.015
6.
Weule
,
H.
,
Huntrup
,
V.
, and
Tritschler
,
H.
,
2001
, “
Micro-Cutting of Steel to Meet New Requirements in Miniaturization
,”
CIRP Ann. Manuf. Technol.
,
50
(
1
), pp.
61
64
.10.1016/S0007-8506(07)62071-X
7.
Dow
,
T.
,
Miller
,
E.
, and
Garrard
,
K.
,
2004
, “
Tool Force and Deflection Compensation for Small Milling Tools
,”
J. Precis. Eng.
,
28
(
1
), pp.
31
45
.10.1016/S0141-6359(03)00072-2
8.
Vogler
,
M.
,
Devor
,
R.
, and
Kapoor
,
S.
,
2004
, “
On the Modeling and Analysis of Machining Performance in Micro End Milling. Part II: Cutting Force Prediction
,”
ASME J. Manuf. Sci. Eng.
,
126
(
4
), pp.
685
705
.10.1115/1.1813470
9.
Shimada
,
S.
,
Ikawa
,
N.
,
Tanaka
,
H.
,
Ohmori
,
G.
,
Uchikoshi
,
J.
, and
Yoshinaga
,
H.
,
1993
, “
Feasibility Study on Ultimate Accuracy in Micro Cutting Using Molecular Dynamics Simulation
,”
CIRP Ann. Manuf. Technol.
,
42
(
1
), pp.
91
94
.10.1016/S0007-8506(07)62399-3
10.
Shizuka
,
H.
,
Okuda
,
K.
,
Nunobiki
,
M.
, and
Inada
,
Y.
,
2011
, “
Study on Surface Roughness in Micro End Milling of Mold Material
,”
J. Adv. Mater. Res.
,
325
, pp.
594
599
.10.4028/www.scientific.net/AMR.325.594
11.
Tsuda
,
K.
,
Okuda
,
K.
,
Shizuka
,
H.
, and
Nunobiki
,
M.
,
2011
, “
A Study of the Micro-End Milling of Titanium Alloy
,”
J. Adv. Mater. Res.
,
325
, pp.
588
593
.10.4028/www.scientific.net/AMR.325.588
12.
Ozel
,
T.
,
Thepsonthi
,
T.
,
Ulutan
,
D.
, and
Kaftanoglu
,
B.
,
2011
, “
Experiments and Finite Element Simulations on Micromilling of Ti–6Al–4V Alloy With Uncoated and CBN Coated Micro Tools
,”
CIRP Ann. Manuf. Technol.
,
60
, pp.
85
88
.10.1016/j.cirp.2011.03.087
13.
Li
,
H.
,
Lai
,
X.
,
Li
,
C.
,
Feng
,
J.
, and
Ni
,
J.
,
2008
, “
Modeling and Experimental Analysis of the Effects of Tool Wear, Minimum Chip Thickness and Micro Tool Geometry on the Surface Roundness in Micro-End Milling
,”
J. Micromech. Microeng.
,
18
, pp.
1
12
.
14.
Pansare
,
V. P.
, and
Sharma
,
S. B.
,
2012
, “
Effect of Chip Load on Surface Finish in High Speed Micro Milling
,”
J. Sci. Eng.
,
3
(
7
).
15.
Wang
,
W.
,
Kweon
,
S. H.
, and
Yang
,
S. H.
,
2005
, “
A Study on Roughness of the Micro-End-Milled Surface Produced by a Miniatured Machine Tool
,”
J. Mater. Process. Technol.
,
162–163
, pp.
702
708
.10.1016/j.jmatprotec.2005.02.141
16.
Boothroyd
,
G.
, and
Knight
,
W.
,
1989
,
Fundamentals of Machining and Machine Tools
,
CRC, Marcel Dekker
, New York, Chap. 5.
17.
Berestovskyi
,
D.
,
Soriaga
,
M. P.
,
Lomeli
,
P.
,
James
,
J.
,
Sessions
,
B.
,
Xiao
,
H.
, and
Hung
,
N. P.
,
2013
, “
Electrochemical Polishing of Microcomponents
,”
Proceedings of the 8th International Conference on Micromanufacturing
,
Victoria, Canada
, Paper No. ICOMM13-0088.
You do not currently have access to this content.