Three-dimensional (3D) molecular dynamics (MD) simulation is performed to study the tool/chip interface friction phenomenon in machining of polycrystalline copper at atomistic scale. Three polycrystalline copper structures with the equivalent grain sizes of 12.25, 7.72, and 6.26 nm are constructed for simulation. Also, a monocrystalline copper structure is simulated as the benchmark case. Besides the grain size, the effects of depth of cut, cutting speed, and tool rake angle are also considered. It is found that the friction force and normal force distributions along the tool/chip interface in both polycrystalline and monocrystalline machining exhibit similar patterns. The reduction in grain size overall increases the magnitude of normal force along the tool/chip interface, but the normal forces in all polycrystalline cases are smaller than that in the monocrystalline case. In atomistic machining of polycrystalline coppers, the increase of depth of cut consistently increases the normal force along the entire contact area, but this trend cannot be observed for the friction force. In addition, both higher cutting speed and more negative tool rake angle do not bring significant changes to the distributions of normal and friction forces on the interface, but both factors tend to increase the magnitudes of the two force components.

References

References
1.
Mate
,
C. M.
,
McClelland
,
G. M.
,
Erlandsson
,
R.
, and
Chiang
,
S.
,
1987
, “
Atomic Scale Friction of a Tungsten Tip on a Graphite Surface
,”
Phys. Rev. Lett.
,
59
, pp.
1942
1945
.10.1103/PhysRevLett.59.1942
2.
Bhushan
,
B.
, and
Sundararajan
,
S.
,
1998
, “
Micro/Nanoscale Friction and Wear Mechanisms of Thin Films Using Atomic Force and Friction Force Microscopy
,”
Acta Mater.
,
46
(
11
), pp.
3793
3804
.10.1016/S1359-6454(98)00062-7
3.
Sung
,
I. H.
,
Lee
,
H. S.
, and
Kim
,
D. E.
,
2003
, “
Effect of Surface Topography on the Frictional Behavior at the Micro/Nano-Scale
,”
Wear
,
254
(
10
), pp.
1019
1031
.10.1016/S0043-1648(03)00308-9
4.
Tambe
,
N. S.
, and
Bhushan
,
B.
,
2005
, “
Friction Model for the Velocity Dependence of Nanoscale Friction
,”
Nanotechnology
,
16
(
10
), pp.
2309
2324
.10.1088/0957-4484/16/10/054
5.
Chung
,
K. H.
,
Lee
,
Y. H.
,
Kim
,
Y. T.
,
Kim
,
D. E.
,
Yoo
,
J.
, and
Hong
,
S.
,
2007
, “
Nano-Tribological Characteristics of PZT Thin Film Investigated by Atomic Force Microscopy
,”
Surf. Coat. Technol.
,
201
(
18
), pp.
7983
7991
.10.1016/j.surfcoat.2007.03.044
6.
Chung
,
K. H.
,
Kim
,
H. J.
, and
Lin
,
L. Y.
,
2008
, “
Tribological Characteristics of ZnO Nanowires Investigated by Atomic Force Microscope
,”
Appl. Phys. A
,
92
(
2
), pp.
267
274
.10.1007/s00339-008-4528-9
7.
Harrison
,
J. A.
,
Schall
,
J. D.
,
Knippenberg
,
M. T.
,
Gao
,
G.
, and
Mikulski
,
P. T.
,
2008
, “
Elucidating Atomic-Scale Friction Using Molecular Dynamics and Specialized Analysis Techniques
,”
J. Phys.: Condens. Matter
,
20
, p.
354009
.10.1088/0953-8984/20/35/354009
8.
Harrison
,
J. A.
,
White
,
C. T.
,
Colton
,
R. J.
, and
Brenner
,
D. W.
,
1992
, “
Nanoscale Investigation of Indentation, Adhesion, and Fracture of Diamond (1 1 1) Surface
,”
Surf. Sci.
,
271
(
1–2
), pp.
57
67
.10.1016/0039-6028(92)90861-Y
9.
Sorensen
,
M. R.
,
Jacobsen
,
K. W.
, and
Jonsson
,
H.
,
1996
, “
Thermal Diffusion Processes in Metal-Tip-Surface Interactions: Contact Formation and Adatom Mobility
,”
Phy. Rev. Lett.
,
77
, pp.
5067
5073
.10.1103/PhysRevLett.77.5067
10.
Shimizu
,
J.
,
Eda
,
H.
,
Yoritsune
,
H.
, and
Ohmura
,
E.
,
1998
, “
Molecular Dynamics Simulation of Friction on the Atomic Scale
,”
Nanotechnology
,
9
(
2
), pp.
118
123
.10.1088/0957-4484/9/2/014
11.
Komanduri
,
R.
,
Chandrasekaran
,
N.
, and
Raff
,
L. M.
,
1998
, “
Effect of Tool Geometry in Nanometric Cutting: A Molecular Dynamics Simulation Approach
,”
Wear
,
219
, pp.
84
97
.10.1016/S0043-1648(98)00229-4
12.
Ikawa
,
N.
,
Shimada
,
S.
,
Tanaka
,
H.
, and
Ohmori
,
G.
,
1991
, “
An Atomistic Analysis of Nanometric Chip Removal as Affected by Tool–Work Interaction in Diamond Turning
,”
Ann. CIRP
,
40
(
1
), pp.
551
554
.10.1016/S0007-8506(07)62051-4
13.
Shimada
,
S.
,
1995
, “
Molecular Dynamics Analysis of Nanometric Cutting Process
,”
Int. J. Jpn., Soc. Precis. Eng.
,
29
, pp.
183
286
.
14.
Belak
,
J.
,
Boercker
,
D. B.
, and
Stowers
,
I. F.
,
1993
, “
Simulation of Nanometer-Scale Deformation of Metallic and Ceramic Surfaces
,”
Mater. Res. Soc. Bull.
,
18
(
5
), pp.
55
59
.10.1557/S088376940004714X
15.
Belak
,
J.
,
1994
, “
Nanotribology: Modeling Atoms When Surfaces Collide
,”
Energy and Technology Review
,
Lawrence Livermore Laboratory
,
Livermore, CA
, pp.
13
24
.
16.
Isono
,
Y.
, and
Tanaka
,
T.
,
1997
, “
Three Dimensional Molecular Dynamics Simulation of Atomic Scale Precision Processing Using a Pin Tool
,”
JSME Int. J. Ser. A: Mech. Mater. Eng.
,
40
(
3
), pp.
211
218
.10.1299/jsmea.40.211
17.
Isono
,
Y.
, and
Tanaka
,
T.
,
1999
, “
Molecular Dynamics Simulation of Atomic Scale Indentation and Cutting Process With Atomic Force Microscope
,”
JSME Int. J. Ser. A: Mech. Mater. Eng.
,
42
(
2
), pp.
158
166
.10.1299/jsmea.42.158
18.
Shi
,
J.
,
Shi
,
Y.
, and
Liu
,
C. R.
,
2010
, “
Evaluation of Three Dimensional Single Point Turning at Atomistic Level by Molecular Dynamics Simulation
,”
Int. J. Adv. Manuf. Technol.
,
54
(
1–4
), pp.
161
171
.10.1007/s00170-010-2929-3
19.
Wang
,
Y.
,
Shi
,
J.
, and
Ji
,
C.
,
2014
, “
A Numerical Study of Residual Stress Induced in Machined Silicon Surfaces by Molecular Dynamics Simulation
,”
Appl. Phys. A
,
115
(
4
). pp.
1263
1279
.10.1007/s00339-013-7977-8
20.
Maekawa
,
K.
, and
Itoh
,
A.
,
1995
, “
Friction and Tool Wear in Nano-Scale Machining—A Molecular Dynamics Approach
,”
Wear
,
188
(
1–2
), pp.
115
122
.10.1016/0043-1648(95)06633-0
21.
Shen
,
B.
, and
Sun
,
F. H.
,
2009
, “
Molecular Dynamics Investigation on the Atomic-Scale Friction Behaviors Between Copper (0 0 1) and Diamond (1 1 1) Surfaces
,”
Appl. Surf. Sci.
,
255
(
17
), pp.
7663
7668
.10.1016/j.apsusc.2009.04.122
22.
Yang
,
J.
, and
Komvopoulos
,
K.
,
2005
, “
A Molecular Dynamics Analysis of Surface Interference and Tip Shape and Size Effects on Atomic-Scale Friction
,”
ASME J. Tribol.
,
127
(
3
), pp.
513
521
.10.1115/1.1843829
23.
Ye
,
Y. Y.
,
Biswas
,
R.
,
Morris
,
J. R.
,
Bastawros
,
A.
, and
Chandra
,
A.
,
2003
, “
Molecular Dynamics Simulation of Nanoscale Machining of Copper
,”
Nanotechnology
,
14
(
3
), pp.
390
396
.10.1088/0957-4484/14/3/307
24.
Fang
,
T. H.
, and
Weng
,
C. I.
,
2000
, “
Three-Dimensional Molecular Dynamics Analysis of Processing Using a Pin Tool on the Atomic Scale
,”
Nanotechnology
,
11
(
3
), pp.
148
153
.10.1088/0957-4484/11/3/302
25.
Ji
,
C.
,
Shi
,
J.
,
Wang
,
Y.
, and
Liu
,
Z.
,
2013
, “
A Numeric Investigation of Tool/Chip Interface Stress Distribution in Atomistic Machining of Single Crystal Copper Structures
,”
Int. J. Adv. Manuf. Technol.
,
68
(
1–4
), pp.
365
374
.10.1007/s00170-013-4734-2
26.
Obikawa
,
T.
,
Postek
,
M. T.
,
Dornfeld
,
D.
,
Liu
,
C. R.
,
Komanduri
,
R.
,
Guo
,
Y.
,
Shi
,
J.
,
Cao
,
J.
,
Zhou
,
J.
,
Yang
,
X.
, and
Li
,
X.
,
2009
, “
MSEC 2009 State-of-Art Paper: Micro/Nano-Technology Applications for Manufacturing Systems and Processes
,”
ASME
2009 International Manufacturing Science and Engineering Conference
,
West Lafayette, IN
, Oct. 4–7, pp.
295
317
. 10.1115/MSEC2009-84330
27.
Shi
,
J.
,
Wang
,
Y.
, and
Yang
,
X.
,
2013
, “
Nano-Scale Machining of Polycrystalline Coppers—Effects of Grain Size and Machining Parameters
,”
Nanoscale Res. Lett.
8
:500.10.1186/1556-276X-8-500
28.
Shi
,
J.
, and
Verma
,
M.
,
2011
, “
Comparing Atomistic Machining of Monocrystalline and Polycrystalling Copper Structures
,”
Mater. Manuf. Processes
,
26
(
8
), pp.
1004
1010
.10.1080/10426914.2010.515641
29.
Haile
,
J. M.
,
1997
,
Molecular Dynamics Simulation: Elementary Methods
,
Wiley
,
New York
.
30.
Pei
,
Q. X.
,
Lu
,
C.
,
Fang
,
F. Z.
, and
Wu
,
H.
,
2006
, “
Nanometric Cutting of Copper: A Molecular Dynamics Study
,”
Comput. Mater. Sci.
,
37
(
4
), pp.
434
441
.10.1016/j.commatsci.2005.10.006
31.
Lin
,
Z. C.
, and
Huang
,
J. C.
,
2008
, “
A Study of the Estimation Method of the Cutting Force for a Conical Tool Under Nanoscale Depth of Cut by Molecular Dynamics
,”
Nanotechnology
,
19
(
11
), pp.
1
13
.10.1088/0957-4484/19/11/115701
32.
Lin
,
Z. C.
, and
Huang
,
J. C.
,
2004
, “
A Nano-Orthogonal Cutting Model Based on a Modified Molecular Dynamics Technique
,”
Nanotechnology
,
15
(
5
), pp.
510
519
.10.1088/0957-4484/15/5/019
33.
Usui
,
E.
, and
Takeyama
,
H.
,
1960
, “
A Photoelastic Analysis of Machining Stresses
,”
ASME J. Eng. Ind.
,
82
(
4
), pp.
303
307
.10.1115/1.3664233
34.
Baqgchi
,
A.
, and
Wright
,
P. K.
,
1987
, “
Stress Analysis in Machining With the Use of Sapphire Tools
,”
Proc. R. Soc. London, Ser. A
,
409
(
1836
), pp.
99
113
.10.1098/rspa.1987.0008
35.
Chandrasekaran
,
H.
, and
Kapoor
,
D. V.
,
1965
, “
Photoelastic Analysis of Tool-Chip Interface Stresses
,”
ASME J. Eng. Ind.
,
87
(
4
), pp.
495
502
.10.1115/1.3670869
36.
Filice
,
L.
,
Micari
,
F.
,
Rizzuti
,
S.
, and
Umbrello
,
D.
,
2007
, “
A Critical Analysis on the Friction Modeling in Orthogonal Machining
,”
Int. J. Mach. Tool. Manuf.
,
47
(
3–4
), pp.
709
714
.10.1016/j.ijmachtools.2006.05.007
You do not currently have access to this content.