Recent advances in manufacturing techniques have opened up new interest in rapid prototyping at the microscale. Traditionally microscale devices are fabricated using photolithography, however this process can be time consuming, challenging, and expensive. This paper focuses on three promising rapid prototyping techniques: laser ablation, micromilling, and 3D printing. Emphasis is given to rapid prototyping tools that are commercially available to the research community rather those only used in manufacturing research. Due to the interest in rapid prototyping within the microfluidics community a test part was designed with microfluidic features. This test part was then manufactured using the three different rapid prototyping methods. Accuracy of the features and surface roughness were measured using a surface profilometer, scanning electron microscope (SEM), and optical microscope. Micromilling was found to produce the most accurate features and best surface finish down to ∼100 μm, however it did not achieve the small feature sizes produced by laser ablation. The 3D printed part, though easily manufactured, did not achieve feature sizes small enough for most microfluidic applications. Laser ablation created somewhat rough and erratic channels, however the process was faster and achieved features smaller than either of the other two methods.

References

1.
Waldbaur
,
A.
,
Rapp
,
H.
,
Länge
,
K.
, and
Rapp
,
B. E.
,
2011
, “
Let There be Chip—Towards Rapid Prototyping of Microfluidic Devices: One-Step Manufacturing Processes
,”
Anal. Methods
,
3
(
12
), pp.
2681
2716
.10.1039/c1ay05253e
2.
Andersson
,
H.
, and
van den Berg
,
A.
,
2004
, “
Microfabrication and Microfluidics for Tissue Engineering: State of the Art and Future Opportunities
,”
Lab Chip
,
4
(
2
), pp.
98
103
.10.1039/b314469k
3.
Modestino
,
M. A.
,
Diaz-Botia
,
C. A.
,
Haussener
,
S.
,
Gomez-Sjoberg
,
R.
,
Ager
,
J. W.
, and
Segalman
,
R. A.
,
2013
, “
Integrated Microfluidic Test-Bed for Energy Conversion Devices
,”
Phys. Chem. Chem. Phys.
,
15
(
19
), pp.
7050
7054
.10.1039/c3cp51302e
4.
Khan Malek
,
C. G.
,
2006
, “
Laser Processing for Bio-Microfluidics Applications (Part I)
,”
Anal. Bioanal. Chem.
,
385
(
8
), pp.
1351
1361
.10.1007/s00216-006-0514-2
5.
Whitesides
,
G. M.
,
2006
, “
The Origins and the Future of Microfluidics
,”
Nature
,
442
(
7101
), pp.
368
373
.10.1038/nature05058
6.
Stratasys
,
2014
, “
Polyjet Materials Data Sheet
,” http://www.stratasys.com
7.
McMaster-Carr
,
2014
, “
More About Plastics
,” http://www.mcmaster.com
8.
Prospector
,
2014
, “
Acrylic Typical Properties Generic Acrylic (PMMA)
,” http://plastics.ides.com/generics/3/c/t/acrylic-properties-processing
9.
Epilog Laser
,
2014
, “
Epilog Laser Product Brochure
,” www.epilogfiles.com
10.
Trotec
,
2014
, “
Trotec Laser Machines Product Overview
,” www.troteclaser.com
11.
Universal Laser Systems
,
2014
, “
ULS Product Line
,” http://www.ulsinc.com/products/product-line/
12.
Hong
,
T.-F.
,
Ju
,
W.-J.
,
Wu
,
M.-C.
,
Tai
,
C.-H.
,
Tsai
,
C.-H.
, and
Fu
,
L.-M.
,
2010
, “
Rapid Prototyping of PMMA Microfluidic Chips Utilizing a CO2 Laser
,”
Microfluid. Nanofluid.
,
9
(
6
), pp.
1125
1133
.10.1007/s10404-010-0633-0
13.
Klank
,
H.
,
Kutter
,
J. P.
, and
Geschke
,
O.
,
2002
, “
CO2-Laser Micromachining and Back-End Processing for Rapid Production of PMMA-Based Microfluidic Systems
,”
Lab Chip
,
2
(
4
), pp.
242
246
.10.1039/b206409j
14.
Cheng
,
J.-Y.
,
Wei
,
C.-W.
,
Hsu
,
K.-H.
, and
Young
,
T.-H.
,
2004
, “
Direct-Write Laser Micromachining and Universal Surface Modification of {PMMA} for Device Development
,”
Sensors Actuators, B
,
99
(
1
), pp.
186
196
.10.1016/j.snb.2003.10.022
15.
Gower
,
M.
, and
Rizvi
,
N.
,
2000
, “
Applications of Laser Ablation to Microengineering
,”
Proc. SPIE
,
4065
, pp.
452
460
.10.1117/12.407367
16.
Ju
,
Y.
,
Liao
,
Y.
,
Zhang
,
L.
,
Sheng
,
Y.
,
Zhang
,
Q.
,
Chen
,
D.
,
Cheng
,
Y.
,
Xu
,
Z.
,
Sugioka
,
K.
, and
Midorikawa
,
K.
,
2011
, “
Fabrication of Large-Volume Microfluidic Chamber Embedded in Glass Using Three-Dimensional Femtosecond Laser Micromachining
,”
Microfluid. Nanofluid.
,
11
(
1
), pp.
111
117
.10.1007/s10404-011-0790-9
17.
Queste
,
S.
,
Salut
,
R.
,
Clatot
,
S.
,
Rauch
,
J. Y.
, and
Khan Malek
,
C. G.
,
2010
, “
Manufacture of Microfluidic Glass Chips by Deep Plasma Etching, Femtosecond Laser Ablation, and Anodic Bonding
,”
Microsyst. Technol.
,
16
(
8–9
), pp.
1485
1493
.10.1007/s00542-010-1020-1
18.
Romoli
,
L.
,
Tantussi
,
G.
, and
Dini
,
G.
,
2011
, “
Experimental Approach to the Laser Machining of PMMA Substrates for the Fabrication of Microfluidic Devices
,”
Opt. Lasers Eng.
,
49
(
3
), pp.
419
427
.10.1016/j.optlaseng.2010.11.013
19.
Alting
,
L.
,
Kimura
,
F.
,
Hansen
,
H. N.
, and
Bissacco
,
G.
,
2003
, “
Micro Engineering
,”
CIRP Ann.–Manuf. Technol.
,
52
(
2
), pp.
635
657
.10.1016/S0007-8506(07)60208-X
20.
McDonald
,
J. P.
,
Mistry
,
V. R.
,
Ray
,
K. E.
, and
Yalisove
,
S. M.
,
2006
, “
Femtosecond Pulsed Laser Direct Write Production of Nano- and Microfluidic Channels
,”
Appl. Phys. Lett.
,
88
(
18
), p.
183113
.10.1063/1.2201620
21.
Costa
,
L.
,
Terekhov
,
A.
,
Rajput
,
D.
,
Hofmeister
,
W.
,
Jowhar
,
D.
,
Wright
,
G.
, and
Janetopoulos
,
C.
,
2011
, “
Femtosecond Laser Machined Microfluidic Devices for Imaging of Cells During Chemotaxis
,”
J. Laser Appl.
,
23
(
4
), p.
042001
10.2351/1.3614405
22.
Vaezi
,
M.
,
Seitz
,
H.
, and
Yang
,
S.
,
2012
, “
A Review on 3D Micro-Additive Manufacturing Technologies
,”
Int. J. Adv. Manuf. Technol.
,
67
(
5–8
), pp.
1721
1754
.10.1007/s00170-012-4605-2
23.
Kitson
,
P. J.
,
Rosnes
,
M. H.
,
Sans
,
V.
,
Dragone
,
V.
, and
Cronin
,
L.
,
2012
, “
Configurable 3D-Printed Millifluidic and Microfluidic ‘Lab on a Chip’ Reactionware Devices
,”
Lab Chip
,
12
(
18
), pp.
3267
3271
.10.1039/c2lc40761b
24.
Bonyár
,
A.
,
Sántha
,
H.
,
Varga
,
M.
,
Ring
,
B.
,
Vitéz
,
A.
, and
Harsányi
,
G.
,
2012
, “
Characterization of Rapid PDMS Casting Technique Utilizing Molding Forms Fabricated by 3D Rapid Prototyping Technology (RPT)
,”
Int. J. Mater. Form.
,
7
(2), pp.
189
196
.10.1007/s12289-012-1119-2
25.
Objet Geometries Ltd.
,
2011
, “
New Advances in Rapid Prototyping Using Inkjet-Based 3D Printing
,” http://objet.com/sites/default/files/pdfs/new-advances-in-RP.pdf
26.
Hartnett
,
J.
,
2007
, “
Process Planning for Microfluidic Device Fabrication
,” Master's thesis, University of California, Berkeley, Berkeley, CA.
27.
Vijayaraghavan
,
A.
,
Jayanathan
,
S.
,
Helu
,
M.
, and
Dornfeld
,
D.
,
2008
, “Design and Fabrication of a Roller Imprinting Device for Microfluidic Device Manufacturing,”
International Manufacturing Science and Engineering Conference
Evanston, IL, Oct. 7–10,
ASME
Paper No. MSEC_ICMP2008-72202, pp. 551–560.10.1115/MSEC_ICMP2008-72202
28.
Dornfeld
,
D.
,
Min
,
S.
, and
Takeuchi
,
Y.
,
2006
, “
Recent Advances in Mechanical Micromachining
,”
CIRP Ann.–Manuf. Technol.
,
55
(
2
), pp.
745
768
10.1016/j.cirp.2006.10.006
29.
Chae
,
J.
,
Park
,
S. S.
, and
Freiheit
,
T.
,
2006
, “
Investigation of Micro-Cutting Operations
,”
Int. J. Mach. Tools Manuf.
,
46
(
3–4
), pp.
313
332
.10.1016/j.ijmachtools.2005.05.015
30.
Objet
Geometries Ltd
.,
2011
, “
Objet Connex350 Brochure
,” http://objet.com/3d-printers/connex/objet-connex350
31.
Objet Geometries Ltd.
,
2012
, “
Objet Connex350
,” http://objet.com/3d-printers/connex/objet-connex350
32.
Objet Geometries Ltd.
,
2012
, “
Materials Overview
,” http://objet.com/3d-printing-materials/overview
33.
You do not currently have access to this content.