Two-photon polymerization (2PP) is a powerful technique in fabricating three-dimensional subdiffraction-limited structures. In this paper, 2PP was applied to generate woodpile structures, one kind of photonic crystal, using SZ2080, which is widely used in 2PP due to its negligible shrinkage. First, the relationship between scanning speed, laser power, and resolution was determined through fabricating free-hanging lines by theoretical and experimental study. Based on this relationship, woodpile structures with different period distances were fabricated with high uniformity as shown by scanning electron microscopy (SEM) images. Then optical properties of woodpile structures were investigated using Fourier transform infrared spectroscopy (FTIR) and a quantitative empirical relationship between period distance and band gaps was established. The empirical relationship can be applied to design woodpile photonic crystals for the optical sensors and filters.

References

References
1.
Maruo
,
S.
,
Nakamura
,
O.
, and
Kawata
,
S.
,
1997
, “
Three-Dimensional Microfabrication With Two-Photon-Absorbed Photopolymerization
,”
Opt. Lett.
,
22
(
2
), pp.
132
134
.10.1364/OL.22.000132
2.
Kawata
,
S.
,
Sun
,
H.-B.
,
Tanaka
,
T.
, and
Takada
,
K.
,
2001
, “
Finer Features for Functional Microdevices
,”
Nature
,
412
(
6848
), pp.
697
698
.10.1038/35089130
3.
Haske
,
W.
,
Chen
,
V. W.
,
Hales
,
J. M.
,
Dong
,
W.
,
Barlow
,
S.
,
Marder
,
S. R.
, and
Perry
,
J. W.
,
2007
, “
65 nm Feature Sizes Using Visible Wavelength 3-D Multiphoton Lithography
,”
Opt. Express
,
15
(
6
), pp.
3426
3436
.10.1364/OE.15.003426
4.
Serbin
,
J.
,
Ovsianikov
,
A.
, and
Chichkov
,
B.
,
2004
, “
Fabrication of Woodpile Structures by Two-Photon Polymerization and Investigation of Their Optical Properties
,”
Opt. Express
,
12
(
21
), pp.
5221
5228
.10.1364/OPEX.12.005221
5.
Schlie
,
S.
,
Ngezahayo
,
A.
,
Ovsianikov
,
A.
,
Fabian
,
T.
,
Kolb
,
H.-A.
,
Haferkamp
,
H.
, and
Chichkov
,
B. N.
,
2007
, “
Three-Dimensional Cell Growth on Structures Fabricated From ORMOCER® by Two-Photon Polymerization Technique
,”
J. Biomater. Appl.
,
22
(
3
), pp.
275
287
.10.1177/0885328207077590
6.
Ovsianikov
,
A.
,
Viertl
,
J.
,
Chichkov
,
B.
,
Oubaha
,
M.
,
MacCraith
,
B.
,
Sakellari
,
I.
,
Giakoumaki
,
A.
,
Gray
,
D.
,
Vamvakaki
,
M.
,
Farsari
,
M.
, and
Fotakis
,
C.
,
2008
, “
Ultra-Low Shrinkage Hybrid Photosensitive Material for Two-Photon Polymerization Microfabrication
,”
ACS Nano
,
2
(
11
), pp.
2257
2262
.10.1021/nn800451w
7.
Ovsianikov
,
A.
,
Shizhou
,
X.
,
Farsari
,
M.
,
Vamvakaki
,
M.
,
Fotakis
,
C.
, and
Chichkov
,
B. N.
,
2009
, “
Shrinkage of Microstructures Produced by Two-Photon Polymerization of Zr-Based Hybrid Photosensitive Materials
,”
Opt. Express
,
17
(
4
), pp.
2143
2148
.10.1364/OE.17.002143
8.
Rekstyte
,
S.
,
Jonavicius
,
T.
, and
Malinauskas
,
M.
,
2014
, “
Direct Laser Writing of Microstructures on Optically Opaque and Reflective Surfaces
,”
Opt. Laser Eng.
,
53
, pp.
90
97
.10.1016/j.optlaseng.2013.08.017
9.
Raimondi
,
M. T.
,
Eaton
,
S. M.
,
Lagana
,
M.
,
Aprile
,
V.
,
Nava
,
M. M.
,
Cerullo
,
G.
, and
Osellame
,
R.
,
2013
, “
Three-Dimensional Structural Niches Engineered via Two-Photon Laser Polymerization Promote Stem Cell Homing
,”
Acta Biomater.
,
9
(1)
, pp.
4579
4584
.10.1016/j.actbio.2012.08.022
10.
Lin
,
S. Y.
,
Fleming
,
J. G.
,
Hetherington
,
D. L.
,
Smith
,
B. K.
,
Biswas
,
R.
,
Ho
,
K. M.
,
Sigalas
,
M. M.
,
Zubrzycki
,
W.
,
Kurtz
,
S. R.
, and
Bur
,
J.
,
1998
, “
A Three-Dimensional Photonic Crystal Operating at Infrared Wavelengths
,”
Nature
,
394
(
6690
), pp.
251
253
.10.1038/28343
11.
Deubel
,
M.
,
von Freymann
,
G.
,
Wegener
,
M.
,
Pereira
,
S.
,
Busch
,
K.
, and
Soukoulis
,
C. M.
,
2004
, “
Direct Laser Writing of Three-Dimensional Photonic-Crystal Templates for Telecommunications
,”
Nature Mater.
,
3
(
7
), pp.
444
447
.10.1038/nmat1155
12.
Sun
,
Q.
,
Juodkazis
,
S.
,
Murazawa
,
N.
,
Mizeikis
,
V.
, and
Misawa
,
H.
,
2010
, “
Femtosecond Laser Photopolymerization of Photonic and Free-Movable Microstructures in Sol-Gel Hybrid Resist
,”
Proc. SPIE
,
7591
, p.
75910K
.10.1117/12.840657
13.
Haque
,
M.
,
Zacharia
,
N. S.
,
Ho
,
S.
, and
Herman
,
P. R.
,
2013
, “
Laser-Written Photonic Crystal Optofluidics for Electrochromatography and Spectroscopy on a Chip
,”
Biomed. Opt. Express
,
4
(
8
), pp.
1472
1485
.10.1364/BOE.4.001472
14.
Mizeikis
,
V.
,
Purlys
,
V.
,
Buividas
,
R.
, and
Juodkazis
,
S.
,
2014
, “
Realization of Structural Color by Direct Laser Write Technique in Photoresist
,”
J. Laser Micro/Nanoeng.
,
9
(
1
), pp.
42
45
.10.2961/jlmn.2014.01.0009
15.
Serbin
,
J.
,
Egbert
,
A.
,
Ostendorf
,
A.
,
Chichkov
,
B. N.
,
Houbertz
,
R.
,
Domann
,
G.
,
Schulz
,
J.
,
Cronauer
,
C.
,
Frohlich
,
L.
, and
Popall
,
M.
,
2003
, “
Femtosecond Laser-Induced Two-Photon Polymerization of Inorganic-Organic Hybrid Materials for Applications in Photonics
,”
Opt. Lett.
,
28
(
5
), pp.
301
303
.10.1364/OL.28.000301
16.
Lee
,
K.-S.
,
Kim
,
R. H.
,
Prabhakaran
,
P.
,
Yang
,
D.-Y.
,
Lim
,
T. W.
, and
Park
,
S. H.
,
2007
, “
Two-Photon Stereolithography
,”
J. Nonlinear Opt. Phys.
,
16
(
1
), pp.
59
73
.10.1142/S021886350700355X
You do not currently have access to this content.