Rotational temperature profiles of H2 in a microwave plasma chemical vapor deposition (MPCVD) reactor were measured via coherent anti-Stokes Raman scattering (CARS) spectroscopy. The temperature was found to increase with reactor pressure, plasma generator power, and distance from the deposition surface. At 10 Torr, the measured temperature range was approximately 700–1200 K while at 30 Torr it was 1200–2000 K under the conditions studied. The introduction of CH4 and N2 to the plasma increased the rotational temperature consistently. These findings will aid in understanding the function of the chemical composition and reactions in the plasma environment of these reactors which, to date, remains obscure.

References

References
1.
Shokrieh
,
M. M.
, and
Rafiee
,
R.
,
2010
, “
A Review of the Mechanical Properties of Isolated Carbon Nanotubes and Carbon Nanotube Composites
,”
Mech. Compos. Mater.
,
46
(
2
), pp.
155
172
.10.1007/s11029-010-9135-0
2.
Shokrieh
,
M. M.
, and
Rafiee
,
R.
,
2010
, “
Prediction of Young's Modulus of Graphene Sheets and Carbon Nanotubes Using Nanoscale Continuum Mechanics Approach
,”
Mater. Des.
,
31
(
2
), pp.
790
795
.10.1016/j.matdes.2009.07.058
3.
Che
,
J.
,
Cagin
,
T.
, and
Goddard
,
W. A.
, III
,
2000
, “
Thermal Conductivity of Carbon Nanotubes
,”
Nanotechnology
,
11
, pp.
65
69
.10.1088/0957-4484/11/2/305
4.
Dresselhaus
,
M. S.
, and
Eklund
,
P. C.
,
2000
, “
Phonons in Carbon Nanotubes
,”
Adv. Phys.
,
49
(
6
), pp.
705
814
.10.1080/000187300413184
5.
Lan
,
C.
,
Amama
,
P. B.
,
Fisher
,
T. S.
, and
Reifenberger
,
R. G.
,
2007
, “
Correlating Electrical Resistance to Growth Conditions for Multiwalled Carbon Nanotubes
,”
Appl. Phys. Lett.
,
91
(
9
), p.
093105
.10.1063/1.2776022
6.
Hone
,
J.
,
Llaguno
,
M. C.
,
Nemes
,
N. M.
,
Johnson
,
A. T.
,
Fischer
,
J. E.
,
Walters
,
D. A.
,
Casavant
,
M. J.
,
Schmidt
,
J.
, and
Smalley
,
R. E.
,
2000
, “
Electrical and Thermal Transport Properties of Magnetically Aligned Single Wall Carbon Nanotube Films
,”
Appl. Phys. Lett.
,
77
(
5
), pp.
666
668
.10.1063/1.127079
7.
Amama
,
P. B.
,
Lan
,
C.
,
Cola
,
B. A.
,
Xu
,
X.
,
Reifenberger
,
R. G.
, and
Fisher
,
T. S.
,
2008
, “
Electrical and Thermal Interface Conductance of Carbon Nanotubes Grown Under Direct Current Bias Voltage
,”
J. Phys. Chem. C
,
112
(
49
), pp.
19727
19733
.10.1021/jp807607h
8.
Castro Neto
,
A. H.
,
Peres
,
N. M. R.
,
Novoselov
,
K. S.
, and
Geim
,
A. K.
,
2009
, “
The Electronic Properties of Graphene
,”
Rev. Mod. Phys.
,
81
(
1
), pp.
109
162
.10.1103/RevModPhys.81.109
9.
Claussen
,
J. C.
,
Franklin
,
A. D.
,
Ul Haque
,
A.
,
Porterfield
,
D. M.
, and
Fisher
,
T. S.
,
2009
, “
Electrochemical Biosensor of Nanocube-Augmented Carbon Nanotube Networks
,”
ACS Nano
,
3
(
1
), pp.
37
44
.10.1021/nn800682m
10.
Claussen
,
J. C.
,
Kim
,
S. S.
,
Haque
,
A. U.
,
Artiles
,
M. S.
,
Porterfield
,
D. M.
, and
Fisher
,
T. S.
,
2010
, “
Electrochemical Glucose Biosensor of Platinum Nanospheres Connected by Carbon Nanotubes
,”
J. Diabetes Sci. Technol.
,
4
(
2
), pp.
312
319
.10.1177/193229681000400211
11.
Bianco
,
S.
,
Giorcelli
,
M.
,
Musso
,
S.
,
Castellino
,
M.
,
Agresti
,
F.
,
Khandelwal
,
A.
,
Lo Russo
,
S.
,
Kumar
,
M.
,
Ando
,
Y.
, and
Tagliaferro
,
A.
,
2010
, “
Hydrogen Adsorption in Several Types of Carbon Nanotubes
,”
J. Nanosci. Nanotechnol.
,
10
(
6
), pp.
3860
3866
.10.1166/jnn.2010.1972
12.
Liu
,
C.
,
Fan
,
Y. Y.
,
Liu
,
M.
,
Cong
,
H. T.
,
Cheng
,
H. M.
, and
Dresselhaus
,
M. S.
,
1999
, “
Hydrogen Storage in Single-Walled Carbon Nanotubes at Room Temperature
,”
Science
,
286
, pp.
1127
1129
.10.1126/science.286.5442.1127
13.
Choi
,
W.
,
Lahiri
,
I.
,
Seelaboyina
,
R.
, and
Kang
,
Y. S.
,
2010
, “
Synthesis of Graphene and Its Applications: A Review
,”
Crit. Rev. Solid State Mater. Sci.
,
35
(
1
), pp.
52
71
.10.1080/10408430903505036
14.
Chen
,
S.
,
Brown
,
L.
,
Levendorf
,
M.
,
Cai
,
W.
,
Ju
,
S.-Y.
,
Edgeworth
,
J.
,
Li
,
X.
,
Magnuson
,
C. W.
,
Velamakanni
,
A.
,
Piner
,
R. D.
,
Kang
,
J.
,
Park
,
J.
, and
Ruoff
,
R. S.
,
2011
, “
Oxidation Resistance of Graphene-Coated Cu and Cu/Ni Alloy
,”
ACS Nano
,
5
(
2
), pp.
1321
1327
.10.1021/nn103028d
15.
Kousalya
,
A. S.
,
Kumar
,
A.
,
Paul
,
R.
,
Zemlyanov
,
D.
, and
Fisher
,
T. S.
,
2013
, “
Graphene: An Effective Oxidation Barrier Coating for Liquid and Two-Phase Cooling Systems
,”
Corros. Sci.
,
69
, pp.
5
10
.10.1016/j.corsci.2012.12.014
16.
Xiong
,
G.
,
Hembram
,
K.
,
Reifenberger
,
R.
, and
Fisher
,
T. S.
,
2013
, “
MnO2-Coated Graphitic Petals for Supercapacitor Electrodes
,”
J. Power Sources
,
227
, pp.
254
259
.10.1016/j.jpowsour.2012.11.040
17.
Li
,
X.
,
Cai
,
W.
,
An
,
J.
,
Kim
,
S.
,
Nah
,
J.
,
Yang
,
D.
,
Piner
,
R.
,
Velamakanni
,
A.
,
Jung
,
I.
,
Tutuc
,
E.
,
Banerjee
,
S. K.
,
Colombo
,
L.
, and
Ruoff
,
R. S.
,
2009
, “
Large-Area Synthesis of High-Quality and Uniform Graphene Films on Copper Foils
,”
Science (New York, N.Y.)
,
324
(
5932
), pp.
1312
1314
.10.1126/science.1171245
18.
Bae
,
S.
,
Kim
,
H.
,
Lee
,
Y.
,
Xu
,
X.
,
Park
,
J.-S.
,
Zheng
,
Y.
,
Balakrishnan
,
J.
,
Lei
,
T.
,
Kim
,
H. R.
,
Song
,
Y. I.
,
Kim
,
Y.-J.
,
Kim
,
K. S.
,
Ozyilmaz
,
B.
,
Ahn
,
J.-H.
,
Hong
,
B. H.
, and
Iijima
,
S.
,
2010
, “
Roll-to-Roll Production of 30-Inch Graphene Films for Transparent Electrodes
,”
Nat. Nanotechnol.
,
5
(
8
), pp.
574
578
.10.1038/nnano.2010.132
19.
Novoselov
,
K. S.
,
Geim
,
A. K.
,
Morozov
,
S. V.
,
Jiang
,
D.
,
Zhang
,
Y.
,
Dubonos
,
S. V.
,
Grigorieva
,
I. V.
, and
Firsov
,
A. A.
,
2004
, “
Electric Field Effect in Atomically Thin Carbon Films
,”
Science (New York, N.Y.)
,
306
, pp.
666
669
.10.1126/science.1102896
20.
Iijima
,
S.
,
1991
, “
Helical Microtubules of Graphitic Carbon
,”
Lett. Nature
,
354
(
6348
), pp.
56
58
.10.1038/354056a0
21.
Journet
,
C.
,
Maser
,
W. K.
,
Bernier
,
P.
, and
Loiseau
,
A.
,
1997
, “
Large-Scale Production of Single-Walled Carbon Nanotubes by the Electric-Arc Technique
,”
Lett. Nature
,
388
, pp.
20
22
.10.1038/40269
22.
Guo
,
T.
,
Nikolaev
,
P.
,
Thess
,
A.
,
Colbert
,
D. T.
, and
Smalley
,
R. E.
,
1995
, “
Catalytic Growth of Single-Walled Nanotubes by Laser Vaporization
,”
Chem. Phys. Lett.
,
243
, pp.
49
54
.10.1016/0009-2614(95)00825-O
23.
Ren
,
Z.
,
Huang
,
Z.
,
Xu
,
J.
,
Wang
,
J.
,
Bush
,
P.
,
Siegal
,
M.
, and
Provencio
,
P.
,
1998
, “
Synthesis of Large Arrays of Well-Aligned Carbon Nanotubes on Glass
,”
Science (New York, N.Y.)
,
282
(
5391
), pp.
1105
1107
.10.1126/science.282.5391.1105
24.
Lee
,
J.-K.
,
Yong Eun
,
K.
,
Baik
,
Y.-J.
,
Jun Cheon
,
H.
,
Weon Rhyu
,
J.
,
Jung Shin
,
T.
, and
Park
,
J.-W.
,
2002
, “
The Large Area Deposition of Diamond by the Multi-Cathode Direct Current Plasma Assisted Chemical Vapor Deposition (DC PACVD) Method
,”
Diamond Relat. Mater.
,
11
(
3–6
), pp.
463
466
.10.1016/S0925-9635(01)00625-2
25.
Meyyappan
,
M.
,
2009
, “
A Review of Plasma Enhanced Chemical Vapour Deposition of Carbon Nanotubes
,”
J. Phys. D: Appl. Phys.
,
42
(
21
), pp.
1
15
.10.1088/0022-3727/42/21/213001
26.
Meyyappan
,
M.
,
Delzeit
,
L.
,
Cassell
,
A.
, and
Hash
,
D.
,
2003
, “
Carbon Nanotube Growth by PECVD: A Review
,”
Plasma Sources Sci. Technol.
,
12
(
2
), pp.
205
216
.10.1088/0963-0252/12/2/312
27.
Baliyan
,
A.
,
Hayasaki
,
Y.
,
Fukuda
,
T.
,
Uchida
,
T.
,
Nakajima
,
Y.
,
Hanajiri
,
T.
, and
Maekawa
,
T.
,
2013
, “
Precise Control of the Number of Walls of Carbon Nanotubes of a Uniform Internal Diameter
,”
J. Phys. Chem. C
,
117
(
1
), pp.
683
686
.10.1021/jp309894s
28.
Shakhatov
,
V. A.
,
De Pascale
,
O.
, and
Capitelli
,
M.
,
2004
, “
Theoretical and Experimental CARS Rotational Distributions of H in a Radio-Frequency Capacitive Discharge Plasma
,”
Eur. Phys. J. D
,
29
(
2
), pp.
235
245
.10.1140/epjd/e2004-00051-1
29.
Butler
,
J. E.
,
Mankelevich
,
Y. A.
,
Cheesman
,
A.
,
Ma
,
J.
, and
Ashfold
,
M. N. R.
,
2009
, “
Understanding the Chemical Vapor Deposition of Diamond: Recent Progress
,”
J. Phys.: Condens. Matter
,
21
(
36
), p.
364201
.10.1088/0953-8984/21/36/364201
30.
Ma
,
J.
,
Cheesman
,
A.
,
Ashfold
,
M. N. R.
,
Hay
,
K. G.
,
Wright
,
S.
,
Langford
,
N.
,
Duxbury
,
G.
, and
Mankelevich
,
Y. A.
,
2009
, “
Quantum Cascade Laser Investigations of CH4 and C2H2 Interconversion in Hydrocarbon/H2 Gas Mixtures During Microwave Plasma Enhanced Chemical Vapor Deposition of Diamond
,”
J. Appl. Phys.
,
106
(
3
), p.
033305
.10.1063/1.3176971
31.
Lombardi
,
G.
,
Hassouni
,
K.
,
Stancu
,
G. D.
,
Mechold
,
L.
,
Röpcke
,
J.
, and
Gicquel
,
A.
,
2005
, “
Study of an H2/CH4 Moderate Pressure Microwave Plasma Used for Diamond Deposition: Modelling and IR Tuneable Diode Laser Diagnostic
,”
Plasma Sources Sci. Technol.
,
14
(
3
), pp.
440
450
.10.1088/0963-0252/14/3/005
32.
Lombardi
,
G.
,
Hassouni
,
K.
,
Stancu
,
G.-D.
,
Mechold
,
L.
,
Ropcke
,
J.
, and
Gicquel
,
A.
,
2005
, “
Modeling of Microwave Discharges of H2 Admixed With CH4 for Diamond Deposition
,”
J. Appl. Phys.
,
98
(
5
), p.
053303
.10.1063/1.2034646
33.
Hash
,
D. B.
,
Bell
,
M. S.
,
Teo
,
K. B. K.
,
Cruden
,
B. A.
,
Milne
,
W. I.
, and
Meyyappan
,
M.
,
2005
, “
An Investigation of Plasma Chemistry for dc Plasma Enhanced Chemical Vapour Deposition of Carbon Nanotubes and Nanofibres
,”
Nanotechnology
,
16
(
6
), pp.
925
930
.10.1088/0957-4484/16/6/050
34.
Bell
,
M. S.
,
Lacerda
,
R. G.
,
Teo
,
K. B. K.
,
Rupesinghe
,
N. L.
,
Amaratunga
,
G. A. J.
,
Milne
,
W. I.
, and
Chhowalla
,
M.
,
2004
, “
Plasma Composition During Plasma-Enhanced Chemical Vapor Deposition of Carbon Nanotubes
,”
Appl. Phys. Lett.
,
85
(
7
), pp.
1137
1139
.10.1063/1.1782256
35.
Kaminski
,
C. F.
, and
Ewart
,
P.
,
1996
, “
Multiplex H2 CARS Thermometry in a Microwave Assisted Diamond CVD Plasma
,”
Appl. Opt.
,
64
(
3
), pp.
103
109
.10.1007/s003400050152
36.
Hassouni
,
K.
,
Silva
,
F.
, and
Gicquel
,
A.
,
2010
, “
Modeling of Diamond Deposition Microwave Cavity Generated Plasmas
,”
J. Phys. D: Appl. Phys.
,
43
(
15
), pp.
1
45
.10.1088/0022-3727/43/15/153001
37.
Yamada
,
H.
,
Chayahara
,
A.
, and
Mokuno
,
Y.
,
2007
, “
Simplified Description of Microwave Plasma Discharge for Chemical Vapor Deposition of Diamond
,”
J. Appl. Phys.
,
101
(
6
), pp.
1
6
.10.1063/1.2711811
38.
Shakhatov
,
V. A.
,
De Pascale
,
O.
,
Capitelli
,
M.
,
Hassouni
,
K.
,
Lombardi
,
G.
, and
Gicquel
,
A.
,
2005
, “
Measurement of Vibrational, Gas, and Rotational Temperatures of H2 in Radio Frequency Inductive Discharge Plasma by Multiplex Coherent Anti-Stokes Raman Scattering Spectroscopy Technique
,”
Phys. Plasmas
,
12
(
2
), pp.
1
10
.10.1063/1.1829065
39.
Chen
,
K.
,
Chuang
,
M.
,
Penney
,
C. M.
, and
Banholzer
,
W. F.
,
1992
, “
Temperature and Concentration Distribution of H2 and H Atoms in Hot-Filament Chemical-Vapor Deposition of Diamond
,”
J. Appl. Phys.
,
71
(
3
), pp.
1485
1493
.10.1063/1.351242
40.
Yaglikci
,
S.
,
Salgara
,
B.
,
Soysal
,
F.
, and
Cicek
,
B.
,
2011
, “
Investigation of Gas Phase Composition During Carbon Nanotube Production
,”
World Acad. Sci., Eng. Technol.
,
59
, pp.
2107
2112
.
41.
Kornas
,
V.
,
Schulz-von der Gathen
,
V.
,
Bornemann
,
T.
,
Dobele
,
H. F.
, and
Prosz
,
G.
,
1991
, “
Temperature Measurements by H2-CARS in the Reactive Zone of a Plasma Test Reactor for Hydrocarbon Synthesis
,”
Plasma Chem. Plasma Process.
,
11
(
2
), pp.
171
184
.10.1007/BF01447241
42.
Umemoto
,
H.
,
2010
, “
Production and Detection of H Atoms and Vibrationally Excited H2 Molecules in CVD Processes
,”
Chem. Vapor Deposition
,
16
(
10–12
), pp.
275
290
.10.1002/cvde.201000043
43.
Meichsner
,
J.
,
Schmidt
,
M.
,
Schneider
,
R.
, and
Wagner
,
H.-E.
, eds.,
2013
,
Nonthermal Plasma Chemistry and Physics
,
Taylor and Francis Group
,
Boca Raton, FL
.
44.
Hancock
,
R. D.
,
Bertagnolli
,
K. E.
, and
Lucht
,
R. P.
,
1997
, “
Nitrogen and Hydrogen CARS Temperature Measurements in a Hydrogen/Air Flame Using a Near-Adiabatic Flat-Flame Burner
,”
Combust. Flame
,
109
(
3
), pp.
323
331
.10.1016/S0010-2180(96)00191-5
45.
Penney
,
C. M.
,
St. Peters
,
R. L.
, and
Lapp
,
M.
,
1974
, “
Absolute Rotational Raman Cross Sections for N2, O2, and CO2
,”
J. Opt. Soc. Am.
,
64
(
5
), pp.
712
716
.10.1364/JOSA.64.000712
46.
Druet
,
S. A. J.
, and
Taran
,
J. P. E.
,
1981
, “
CARS Spectroscopy
,”
Prog. Quantum Electron.
,
7
(
1
), pp.
1
72
.10.1016/0079-6727(81)90002-1
47.
Lucht
,
R. P.
,
1987
, “
Three-Laser Coherent Anti-Stokes Raman Scattering Measurements of Two Species
,”
Opt. Lett.
,
12
(
2
), pp.
78
80
.10.1364/OL.12.000078
48.
Banwell
,
C. N.
,
1972
,
Fundamentals of Molecular Spectroscopy
,
2nd ed.
,
McGraw-Hill Book Company
,
London
.
49.
Laurendeau
,
N. M.
,
2005
,
Statistical Thermodynamics: Fundamentals and Applications.
Cambridge University Press
,
New York
.
50.
Eckbreth
,
A. C.
,
1996
,
Laser Diagnostics for Combustion Temperature and Species
,
2nd ed.
,
Gordon and Breach Science Publishers SA
,
Amsterdam B. V
.
51.
Maschmann
,
M. R.
,
Amama
,
P. B.
,
Goyal
,
A.
,
Iqbal
,
Z.
,
Gat
,
R.
, and
Fisher
,
T. S.
,
2006
, “
Parametric Study of Synthesis Conditions in Plasma-Enhanced CVD of High-Quality Single-Walled Carbon Nanotubes
,”
Carbon
,
44
(
1
), pp.
10
18
.10.1016/j.carbon.2005.07.027
52.
Das
,
A.
,
Chakraborty
,
B.
, and
Sood
,
A. K.
,
2008
, “
Raman Spectroscopy of Graphene on Different Substrates and Influence of Defects
,”
Bull. Mater. Sci.
,
31
(
3
), pp.
579
584
.10.1007/s12034-008-0090-5
53.
Ferrari
,
A. C.
,
Meyer
,
J. C.
,
Scardaci
,
V.
,
Casiraghi
,
C.
,
Lazzeri
,
M.
,
Mauri
,
F.
,
Piscanec
,
S.
,
Jiang
,
D.
,
Novoselov
,
K. S.
,
Roth
,
S.
, and
Geim
,
A. K.
,
2006
, “
Raman Spectrum of Graphene and Graphene Layers
,”
Phys. Rev. Lett.
,
97
(
18
), p.
187401
.10.1103/PhysRevLett.97.187401
54.
Palmer
,
R.
,
1989
, “
The CARSFT Computer Code for Calculating Coherent Anti-Stokes Raman Spectra: User and Programmer Information
,”
Sandia National Laboratories
, Report No. SAND89-8206.
55.
Lucht
,
R. P.
, and
Farrow
,
R. L.
,
1989
, “
Saturation Effects in Coherent Anti-Stokes Raman Scattering Spectroscopy of Hydrogen
,”
J. Opt. Soc. Am. B
,
6
(
12
), pp.
2313
2326
.10.1364/JOSAB.6.002313
56.
Cola
,
B. A.
,
Xu
,
J.
,
Cheng
,
C.
,
Xu
,
X.
,
Fisher
,
T. S.
, and
Hu
,
H.
,
2007
, “
Photoacoustic Characterization of Carbon Nanotube Array Thermal Interfaces
,”
J. Appl. Phys.
,
101
(
5
), pp.
1
9
.10.1063/1.2510998
57.
Cola
,
B. A.
,
Xu
,
X.
, and
Fisher
,
T. S.
,
2007
, “
Increased Real Contact in Thermal Interfaces: A Carbon Nanotube/Foil Material
,”
Appl. Phys. Lett.
,
90
(
9
), pp.
1
3
.10.1063/1.2644018
58.
Kumar
,
A.
,
Voevodin
,
A.
,
Zemlyanov
,
D.
,
Zakharov
,
D.
, and
Fisher
,
T.
,
2012
, “
Rapid Synthesis of Few-Layer Graphene Over Cu Foil
,”
Carbon
,
50
(
4
), pp.
1546
1553
.10.1016/j.carbon.2011.11.033
59.
Bhuvana
,
T.
,
Kumar
,
A.
,
Sood
,
A.
,
Gerzeski
,
R. H.
,
Hu
,
J.
,
Bhadram
,
V. S.
,
Narayana
,
C.
, and
Fisher
,
T. S.
,
2010
, “
Contiguous Petal-Like Carbon Nanosheet Outgrowths From Graphite Fibers by Plasma CVD
,”
ACS Appl. Mater. Interfaces
,
2
(
3
), pp.
644
648
.10.1021/am9009154
60.
Xiong
,
G.
,
Hembram
,
K.
,
Zakharov
,
D. N.
,
Reifenberger
,
R.
, and
Fisher
,
T. S.
,
2012
, “
Controlled Thin Graphitic Petal Growth on Oxidized Silicon
,”
Diamond Relat. Mater.
,
27–28
, pp.
1
9
.10.1016/j.diamond.2012.05.002
61.
Chu
,
H. N.
,
Den Hartog
E. A.
,
Lefkow
,
A. R.
,
Jacobs
,
J.
,
Anderson
,
L. W.
,
Lagally
,
M. G.
, and
Lawler
,
J. E.
,
1991
, “
Measurements of the Gas Kinetic Temperature in a CH4-H2 Discharge During the Growth of Diamond
,”
Phys. Rev. A
,
44
(
6
), pp.
3796
3803
.10.1103/PhysRevA.44.3796
62.
Fridman
,
A.
,
2008
,
Plasma Chemistry
,
1st ed.
,
Cambridge University Press
,
Boca Raton, FL
.10.1017/CBO9780511546075
You do not currently have access to this content.