The objective of this paper is to define and derive a dimensionless number as a function of material properties and process parameters to quantify the extent (magnitude) of thermocapillary flow in pulsed laser micropolishing (PLμP). Experimental work has shown that thermocapillary flow can tremendously reduce surface roughness (smoothing effect) although it inevitably introduces additional surface features (roughening effect) at the same time. Both the smoothing and roughening effects increase as the extent of thermocapillary flow increases. The extent of thermocapillary flow is the bridge from the available information (i.e., initial surface profile, material properties, and process parameters) to the polished surface profile to be predicted. A dimensionless number, called the normalized average displacement of a liquid particle in a single laser pulse, is proposed and derived via analytical heat transfer and fluid flow equations. The calculated normalized displacement is found to be proportional to the measured slope of the introduced features on Ti6Al4V surface polished with various process parameters, which indicates that the dimensionless number successfully describes the extent of thermocapillary flow. The normalized average displacement will be very useful for prediction of polished surface profile and hence parameter selection and process optimization in the future.

References

References
1.
Perry
,
T. L.
,
Werschmoeller
,
D.
,
Duffie
,
N. A.
,
Li
,
X.
, and
Pfefferkorn
,
F. E.
,
2009
, “
Examination of Selective Pulsed Laser Micropolishing on Microfabricated Nickel Samples Using Spatial Frequency Analysis
,”
ASME J. Manuf. Sci. Eng.
,
131
(
2
), p.
021002
.10.1115/1.3075874
2.
Vadali
,
M.
,
Ma
,
C.
,
Duffie
,
N. A.
,
Li
,
X.
, and
Pfefferkorn
,
F. E.
,
2012
, “
Pulsed Laser Micro Polishing: Surface Prediction Model
,”
J. Manuf. Process.
,
14
(
3
), pp.
307
315
.10.1016/j.jmapro.2012.03.001
3.
Perry
,
T. L.
,
Werschmoeller
,
D.
,
Li
,
X.
,
Pfefferkorn
,
F. E.
, and
Duffie
,
N. A.
,
2009
, “
The Effect of Laser Pulse Width and Feed Rate on Pulsed Laser Polishing of Microfabricated Nickel Samples
,”
ASME J. Manuf. Sci. Eng.
,
131
(
3
), p.
031002
.10.1115/1.3106033
4.
Nüsser
,
C.
,
Wehrmann
,
I.
, and
Willenborg
,
E.
,
2011
, “
Influence of Intensity Distribution and Pulse Duration on Laser Micro Polishing
,”
Phys. Proc.
,
12
(
part A
), pp.
462
471
.10.1016/j.phpro.2011.03.057
5.
Hafiz
,
A. M. K.
,
Bordatchev
,
E. V.
, and
Tutunea-Fatan
,
R. O.
,
2012
, “
Influence of Overlap Between the Laser Beam Tracks on Surface Quality in Laser Polishing of AISI H13 Tool Steel
,”
J. Manuf. Process.
,
14
(
4
), pp.
425
434
.10.1016/j.jmapro.2012.09.004
6.
Vadali
,
M.
,
Ma
,
C.
,
Duffie
,
N. A.
,
Li
,
X.
, and
Pfefferkorn
,
F. E.
,
2013
, “
Effects of Laser Pulse Duration on Pulsed Laser Micro Polishing
,”
ASME J. Micro Nano Manuf.
,
1
(
1
), p.
011006
.10.1115/1.4023756
7.
Bereznai
,
M.
,
Pelsöczi
,
I.
,
Tóth
,
Z.
,
Turzó
,
K.
,
Radnai
,
M.
,
Bor
,
Z.
, and
Fazekas
,
A.
,
2003
, “
Surface Modifications Induced by ns and Sub-ps Excimer Laser Pulses on Titanium Implant Material
,”
Biomaterials
,
24
(
23
), pp.
4197
4203
.10.1016/S0142-9612(03)00318-1
8.
Kim
,
Y. G.
,
Ryu
,
J. K.
,
Kim
,
D. J.
,
Kim
,
H. J.
,
Lee
,
S.
,
Cha
,
B. H.
,
Cha
,
H.
, and
Kim
,
C. J.
,
2004
, “
Microroughness Reduction of Tungsten Films by Laser Polishing Technology with a Line Beam
,”
Jpn J. Appl. Phys.
,
43
, pp.
1315
1322
.10.1143/JJAP.43.1315
9.
Pfefferkorn
,
F. E.
,
Duffie
,
N. A.
,
Li
,
X.
,
Vadali
,
M.
, and
Ma
,
C.
,
2013
, “
Improving Surface Finish in Pulsed Laser Micro Polishing Using Thermocapillary Flow
,”
CIRP Ann.
,
62
(
1
), pp.
203
206
.10.1016/j.cirp.2013.03.112
10.
Heiple
,
C. R.
, and
Roper
,
J. R.
,
1982
, “
Mechanism for Minor Element Effect on GTA Fusion Zone Geometry
,”
Weld. J.
,
61
(
4
), pp.
97s
102s
.
11.
Kou
,
S.
, and
Sun
,
D. K.
,
1985
, “
Fluid Flow and Weld Penetration in Stationary Arc Welds
,”
Metall. Mater. Trans. A
,
16A
(
2
), pp.
203
213
.10.1007/BF02816047
12.
Tsai
,
M. C.
, and
Kou
,
S.
,
1989
, “
Marangoni Convection in Weld Pools With a Free Surface
,”
Int. J. Numer. Methods Fluids
,
9
(
12
), pp.
1503
1516
.10.1002/fld.1650091206
13.
Sim
,
B.
, and
Kim
,
W.
,
2005
, “
Melting and Dynamic-Surface Deformation in Laser Surface Heating
,”
Int. J. Heat Mass Transfer
,
48
(
6
), pp.
1137
1144
.10.1016/j.ijheatmasstransfer.2004.08.032
14.
Smithells
,
C. J.
,
2004
,
Smithells Metals Reference Book
,
Elsevier Butterworth-Heinemann
,
Boston
, MA, Chap. 14, pp.
9
11
.
15.
Ma
,
C.
,
Vadali
,
M.
,
Duffie
,
N. A.
,
Pfefferkorn
,
F. E.
, and
Li
,
X.
,
2013
, “
Melt Pool Flow and Surface Evolution During Pulsed Laser Micro Polishing of Ti6Al4V
,”
ASME J. Manuf. Sci. Eng.
,
135
(
6
), p.
061023
.10.1115/1.4025819
16.
Carslaw
,
H. S.
, and
Jaeger
,
J. C.
,
1947
,
Conduction of Heat in Solids
, Appendix II,
Clarendon
,
Oxford, UK
, pp.
370
373
.
17.
Rai
,
R.
,
Elmer
,
J. W.
,
Palmer
,
T. A.
, and
DebRoy
,
T.
,
2007
, “
Heat Transfer and Fluid Flow during Keyhole Mode Laser Welding of Tantalum, Ti-6Al-4V, 304L Stainless Steel and Vanadium
,”
J. Phys. D: Appl. Phys.
,
40
(
18
), pp.
5753
5766
.10.1088/0022-3727/40/18/037
18.
Mills
,
K. C.
,
2002
,
Recommended Thermophysical Properties for Selected Commercial Alloys
,
Woodhead Publishing Limited
,
Cambridge, UK
, pp.
211
217
.
19.
Kwon
,
H.
,
Baek
,
W.
,
Kim
,
M.
,
Shin
,
W.
, and
Yoh
,
J.
,
2012
, “
Temperature-Dependent Absorptance of Painted Aluminum, Stainless Steel 304, and Titanium for 1.07 mm and 10.6 mm Laser Beams
,”
Opt. Lasers Eng.
,
50
(
2
), pp.
114
121
.10.1016/j.optlaseng.2011.10.001
You do not currently have access to this content.