The property of nanocomposites is crucially affected by nanoparticle dispersion. Transmission electron microscopy (TEM) is the “golden standard” in nanoparticle dispersion characterization. A TEM Micrograph is a two-dimensional (2D) projection of a three-dimensional (3D) ultra-thin specimen (50–100 nm thick) along the optic axis. Existing dispersion quantification methods assume complete spatial randomness (CSR) or equivalently the homogeneous Poisson process as the distribution of the centroids of nanoparticles under which nanoparticles are randomly distributed. Under the CSR assumption, absolute magnitudes of dispersion quantification metrics are used to compare the dispersion quality across samples. However, as hard nanoparticles do not overlap in 3D, centroids of nanoparticles cannot be completely randomly distributed. In this paper, we propose to use the projection of the exact 3D hardcore process, instead of assuming CSR in 2D, to firstly account for the projection effect of a hardcore process in TEM micrographs. By employing the exact 3D hardcore process, the thickness of the ultra-thin specimen, overlooked in previous research, is identified as an important factor that quantifies how far the assumption of Poisson process in 2D deviates from the projection of a hardcore process. The paper shows that the Poisson process can only be seen as the limit of the hardcore process as the specimen thickness tends to infinity. As a result, blindly using the Poisson process with limited specimen thickness may generate misleading results. Moreover, because the specimen thickness is difficult to be accurately measured, the paper also provides robust analysis of various dispersion metrics to the error of the claimed specimen thickness. It is found that the quadrat skewness and the K-function are relatively more robust to the misspecification of the specimen thickness than other metrics. Furthermore, analysis of detection power against various clustering degrees is also conducted for these two selected robust dispersion metrics. We find that dispersion metrics based on the K-function is relatively more powerful than the quadrat skewness. Finally, an application to real TEM micrographs is used to illustrate the implementation procedures and the effectiveness of the method.

References

References
1.
Ajayan
,
P.
,
Schadler
,
L.
, and
Braun
,
P.
,
2003
,
Nanocomposite Science and Technology
,
Wiley-VCH Verlag, GmbH & Co. KGaA
,
Weinheim
, Germany, Chap. 2.10.1002/3527602127
2.
Ray
,
S.
, and
Okamoto
,
M.
,
2003
, “
Polymer/layered Silicate Nanocomposites: A Review from Preparation to Processing
,”
Prog. Polym. Sci.
,
28
(
11
), pp.
1539
1641
.10.1016/j.progpolymsci.2003.08.002
3.
Paul
,
D.
, and
Robeson
,
L.
,
2008
, “
Polymer Nanotechnology: Nanocomposites
,”
Polymer
,
49
, pp.
3187
3204
.10.1016/j.polymer.2008.04.017
4.
Thostensen
,
E.
,
Li
,
C.
, and
Chou
,
T.
,
2005
, “
Nanocomposites in Context
,”
Compos. Sci. Technol.
,
65
(
3–4
), pp.
491
516
.10.1016/j.compscitech.2004.11.003
5.
Njuguna
,
J.
, and
Pielichowski
,
K.
,
2004
, “
Polymer Nanocomposites for Aerospace Applications: Fabrication
,”
Adv. Eng. Mater.
,
6
(
4
), pp.
193
203
.10.1002/adem.200305111
6.
West
,
D.
, and
Malhotra
,
V.
,
2006
, “
Rupture of Nanoparticle Agglomerates and Formulation of Al2O3-epoxy Nanocomposites Using Ultrasonic Cavitation Approach: Effects on the Structural and Mechanical Properties
,”
Polym. Eng. Sci.
,
46
(
4
), pp.
426
430
.10.1002/pen.20513
7.
Naous
,
W.
,
Yu
,
X.
,
Zhang
,
Q.
,
Naito
,
K.
, and
Kagawa
,
Y.
,
2006
, “
Morphology, Tensile Properties, and Fracture Toughness of Epoxy/Al2O3 Nanocomposites
,”
J. Polym. Sci. Part B
,
44
(
10
), pp.
1466
1473
.10.1002/polb.20800
8.
Wetzel
,
B.
,
Rosso
,
P.
,
Haupert
,
F.
, and
Friedrich
,
K.
,
2006
, “
Epoxy Nanocomposites—Fracture and Toughening Mechanisms
,”
Eng. Fract. Mech.
,
73
(
16
), pp.
2375
2398
.10.1016/j.engfracmech.2006.05.018
9.
Zuiderduin
,
W.
,
Westzaan
,
C.
,
Huetink
,
J.
, and
Gaymans
,
R.
,
2003
, “
Toughening of Polypropylene with Calcium Carbonate Particles
,”
Polymer
,
44
, pp.
261
275
.10.1016/S0032-3861(02)00769-3
10.
Li
,
Z.
,
Okamoto
,
K
,
Ohki
,
Y.
, and
Tanaka
,
T.
,
2011
, “
The Role of Nano and Micro Particles on Particle Discharge and Breakdown Strength in Epoxy Composites
,”
IEEE Trans. Dielectr. Electr. Insul.
,
18
(
3
), pp.
675
681
.10.1109/TDEI.2011.5931052
11.
Zhang
,
H.
,
Zhang
,
H.
,
Tang
,
L.
,
Zhang
,
Z.
,
Gu
,
L.
,
Xu
,
Y.
, and
Eger
,
C.
,
2010
, “
Wear-Resistant and Transparent Acrylate-Based Coating With Highly Filled Nanosilica Particles
,”
Tribol. Int.
,
43
(
1–2
), pp.
83
91
.10.1016/j.triboint.2009.05.022
12.
Khare
,
H.
, and
Burris
,
D.
,
2010
, “
A Quantitative Method for Measuring Nanocomposite Dispersion
,”
Polymer
,
51
, pp.
719
729
.10.1016/j.polymer.2009.12.031
13.
Fultz
,
B.
, and
Howe
,
J.
,
2013
,
Transmission Electron Microscopy and Diffractometry of Materials
,
Springer-Verlag
,
Berlin/Heidelberg
, Germany, Chap 5.
14.
Cressie
,
N.
,
1993
,
Statistics for Spatial Data
,
Wiley-Interscience
,
New York
, Chap. 8.
15.
Diggle
,
P.
,
2003
,
Statistical Analysis of Spatial Point Patterns
,
Arnold
,
London
, Chap. 2.
16.
Illian
,
J.
,
Penttinen
,
A.
,
Stoyan
,
H.
, and
Stoyan
,
D.
,
2008
,
Statistical Analysis and Modeling of Spatial Point Patterns
,
Wiley-Interscience
,
Chichester, UK
, Chap. 1.
17.
Kim
,
D.
,
Lee
,
J.
,
Barry
,
C.
, and
Mead
,
J.
,
2007
, “
Microscopic Measurement of the Degree of Mixing for Nanoparticles in Polymer Nanocomposites by TEM Images
,”
Microsc. Res. Tech.
,
70
, pp.
539
546
.10.1002/jemt.20478
18.
Hui
,
L.
,
Smith
,
R.
,
Wang
,
X.
,
Nelson
,
J.
, and
Schadler
,
L.
,
2008
, “
Quantification of Particulate Mixing in Nanocomposites
,”
Annual Report Conference on Electrical Insulation Dielectric Phenomena
, pp.
317
320
.
19.
Liu
,
J.
,
Gao
,
Y.
,
Cao
,
D.
,
Zhang
,
L.
, and
Guo
,
Z.
,
2011
, “
Nanoparticle Dispersion and Aggregation in Polymer Nanocomposites: Insights from Molecular Dynamics Simulation
,”
Langmuir
,
27
, pp.
7926
7933
.10.1021/la201073m
20.
Duyckaerts
,
C.
,
Godefroy
,
G.
, and
Hauw
,
J.
,
1994
, “
Evaluation of Neuronal Numerical Density by Dirichlet Tessellation
,”
J. Neurosci. Methods
,
51
, pp.
47
69
.10.1016/0165-0270(94)90025-6
21.
Myles
,
J.
,
Flenley
,
E.
,
Fieller
,
N.
,
Atkinson
,
H.
, and
Jones
,
H.
,
1995
, “
Statistical Tests for Clustering of Second Phases in Composite Materials
,”
Philos. Mag. A
,
72
(
2
), pp.
515
528
.10.1080/01418619508239936
22.
Tong
,
L.
,
Wang
,
C.
, and
Chen
,
D.
,
2007
, “
Development of a New Cluster Index for Wafer Defects
,”
Int. J. Adv. Manuf. Technol.
,
31
(
7–8
), pp.
705
715
.10.1007/s00170-005-0240-5
23.
Zhou
,
Q.
,
Zeng
,
L.
,
DeCicco
,
M.
,
Li
,
X.
, and
Zhou
,
S.
,
2012
, “
A Comparative Study on Clustering Indices for Distribution of Nanoparticles in Metal Matrix Nanocomposites
,”
CIRP J. Manuf. Sci. Technol.
,
5
(
4
), pp.
348
356
.10.1016/j.cirpj.2012.09.013
24.
Basu
,
S.
,
Tewari
,
A.
,
Fasulo
,
P.
, and
Rodgers
,
W.
,
2007
, “
Transmission Electron Microscopy Based Direct Mathematical Quantifiers for Dispersion in Nanocomposites
,”
Appl. Phys. Lett.
,
91
(
5
), p.
053105
.10.1063/1.2760182
25.
Hamming
,
L.
,
Qiao
,
R.
,
Messersmith
,
P.
, and
Brinson
,
L.
,
2009
, “
Effects of Dispersion and Interfacial Modification on the Macroscale Properties of TiO2 Polymer-matrix Nanocomposites
,”
Compos. Sci. Technol.
,
69
, pp.
1880
1886
.10.1016/j.compscitech.2009.04.005
26.
Xie
,
S.
,
Harkin-Jones
,
E.
,
Shen
,
Y.
,
Hornsby
,
P.
,
McAfee
,
M.
,
McNally
,
T.
,
Patel
,
R.
,
Benkreira
,
H.
, and
Coates
,
P.
,
2010
, “
Quantitative Characterization of Clay Dispersion in Polypropylene-clay Nanocomposites by Combined Transmission Electron Microscopy and Optical Microscopy
,”
Mater. Lett.
,
64
(
2
), pp.
185
188
.10.1016/j.matlet.2009.10.042
27.
Luo
,
Z.
, and
Koo
,
J.
,
2007
, “
Quantifying the Dispersion of Mixture Microstructures
,”
J. Microsc.
,
225
(
2
), pp.
118
125
.10.1111/j.1365-2818.2007.01722.x
28.
Khare
,
H.
, and
Burris
,
D.
,
2010
, “
A Quantitative Method for Measuring Nanocomposite Dispersion
,”
Polymer
,
51
, pp.
719
729
.10.1016/j.polymer.2009.12.031
29.
Guise
,
O.
, and
Strom
,
C.
,
2011
, “
Quantifying Dispersion in Polymer Systems by Combining Image Analysis and Statistical Analysis
,”
Microsc. Microanal.
,
17
(
S2
), pp.
1472
1473
.10.1017/S1431927611008233
30.
Bray
,
D.
,
Gilmour
,
S.
,
Guild
,
F.
,
Hsieh
,
T.
,
Masania
,
K.
, and
Taylor
,
A.
,
2011
, “
Quantifying Nanoparticle Dispersion: Application of the Delaunay Network for Objective Analysis of Sample Micrographs
,”
J. Mater. Sci.
,
46
(
19
), pp.
6437
6452
.10.1007/s10853-011-5615-4
31.
Basu
,
S.
,
Fasulo
,
P.
, and
Rodgers
,
W.
,
2011
, “
Stereology-Based Quantitative Characterization of Dispersion from TEM Micrographs of Polymer-Clay Nanocomposites
,”
J. Appl. Polym. Sci.
,
119
(
1
), pp.
396
411
.10.1002/app.32756
32.
Fornes
,
T.
, and
Paul
,
D.
,
2003
, “
Modeling Properties of Nylon 6/Clay Nanocomposites Using Composite Theories
,”
Polymer
,
44
, pp.
4993
5013
.10.1016/S0032-3861(03)00471-3
33.
Dennis
,
H.
,
Hunter
,
D.
,
Chang
,
D.
,
Kim
,
S.
,
White
,
J.
,
Cho
,
J.
, and
Paul
,
D.
,
2001
, “
Effect of Melt Processing Conditions on the Extent of Exfoliation in Organoclay-based Nanocomposites
,”
Polymer
,
42
, pp.
9513
9522
.10.1016/S0032-3861(01)00473-6
34.
Ripley
,
B.
,
1979
, “
Algorithm AS 137: Simulating Spatial Patterns: Dependent Samples from a Multivariate Density
,”
J. Roy. Stat. Soc., Ser. C (Applied Statistics)
,
28
(
1
), pp.
109
112
.
35.
Curtis
,
J.
, and
McIntosh
,
R.
,
1950
, “
The Interrelations of Certain Analytic and Synthetic Phytosociological Characters
,”
Ecology
,
31
, pp.
434
455
.10.2307/1931497
36.
McFarland
,
A.
, and
Van Duyne
,
R.
,
2003
, “
Single Silver Nanoparticles as Real-time Optical Sensors With Zeptomole Sensitivity
,”
Nano Lett.
,
3
(
8
), pp.
1057
1062
.10.1021/nl034372s
37.
Glotov
,
O.
,
2008
, “
Image Processing of the Fractal Aggregates Composed of Nanoparticles
,”
Russ. J. Phys. Chem. A, Focus Chem.
,
82
(
13
), pp.
2213
2218
.10.1134/S0036024408130098
38.
Chen
,
L.
, and
Ho
,
C.
,
2008
, “
Development of Nanoparticle Shape Measurement and Analysis for Process Characterization of TiO2 Nanoparticle Synthesis
,”
Rev. Adv. Mater. Sci.
,
18
(
8
), pp.
677
684
.
39.
Park
,
C.
,
Huang
,
J.
,
Huitink
,
D.
,
Kundu
,
S.
,
Mallick
,
B.
,
Liang
,
H.
, and
Ding
,
Y.
,
2012
, “
A Multi-Stage, Semi-Automated Procedure for Analyzing the Morphology of Nanoparticles
,”
IIE Trans.
,
44
(
7
), pp.
507
522
.10.1080/0740817X.2011.587867
40.
Fisker
,
R.
,
Carstensen
,
J.
,
Hansen
,
M.
,
Bdker
,
F.
, and
Morup
,
S.
,
2000
, “
Estimation of Nanoparticle Size Distributions by Image Analysis
,”
J. Nanoparticle Res.
,
2
(
3
), pp.
267
277
.10.1023/A:1010023316775
41.
Li
,
X.
,
Jin
,
J.
,
Huang
,
D.
, and
Yu
,
D.
,
2012
, “
The Adaptive Gaussian Mixture Algorithm on Digital Image Binarization,
” Academy of Mathematics and Systems Science, Chinese Academy of Sciences.
42.
Parvin
,
B.
,
Yang
,
Q.
,
Han
,
J.
,
Chang
,
H.
,
Rydberg
,
B.
, and
Barcellos-hoff
,
M.
,
2007
, “
Iterative Voting for Inference of Structural Saliency and Characterization of Subcellular Events
,”
IEEE Trans. Image Process.
,
16
(
3
), pp.
615
623
.10.1109/TIP.2007.891154
43.
Cui
,
H.
,
Feng
,
Y.
,
Ren
,
W.
,
Zeng
,
T.
,
Lv
,
H.
, and
Pan
,
Y.
,
2009
, “
Strategies of Large Scale Synthesis of Monodisperse Nanoparticles
,”
Recent Patents Nanotechnol.
,
3
, pp.
32
41
.10.2174/187221009787003302
44.
Chen
,
M.
,
Falkner
,
J.
,
Guo
,
W.
,
Zhang
,
J.
,
Sayes
,
C.
, and
Colvin
,
V.
,
2005
, “
Synthesis and Self-Organization of Soluble Monodisperse Palladium Nanoclusters
,”
J. Colloid. Interface Sci.
,
287
, pp.
146
151
.10.1016/j.jcis.2005.02.003
You do not currently have access to this content.