Near-field electrohydrodynamic jet (E-jet) printing has recently gained significant interest within the manufacturing research community because of its ability to produce micro/submicron-scale droplets using a wide variety of inks and substrates. However, the process currently operates in open-loop and as a result suffers from unpredictable printing quality. The use of physics-based, control-oriented process models is expected to enable closed-loop control of this printing technique. The objective of this research is to perform a fundamental study of the substrate-side droplet shape-evolution in near-field E-jet printing and to develop a physics-based model of the same that links input parameters such as voltage magnitude and ink properties to the height and diameter of the printed droplet. In order to achieve this objective, a synchronized high-speed imaging and substrate-side current-detection system is implemented to enable a correlation between the droplet shape parameters and the measured current signal. The experimental data reveals characteristic process signatures and droplet spreading regimes. The results of these studies served as the basis for a model that uses the measured current signal as its input to predict the final droplet diameter and height. A unique scaling factor based on the measured current signal is used in this model instead of relying on empirical scaling laws found in prior E-jet literature. For each of the three inks tested in this study, the average error in the model predictions is under 10% for both the diameter and the height of the steady-state droplet. While printing under nonconducive ambient conditions of low relative humidity and high temperature, the use of the environmental correction factor in the model is seen to result in a 17% reduction in the model prediction error.

References

References
1.
Park
,
J.-U.
,
Hardy
,
M.
,
Kang
,
S. J.
,
Barton
,
K.
,
Adair
,
K.
,
Mukhopadhyay
,
D. K.
,
Lee
,
C. Y.
,
Strano
,
M. S.
,
Alleyne
,
A. G.
,
Georgiadis
,
J. G.
,
Ferreira
,
P. M.
, and
Rogers
,
J. A.
,
2007
, “
High-Resolution Electrohydrodynamic Jet Printing
,”
Nature Mater.
,
6
, pp.
782
789
.10.1038/nmat1974
2.
Park
,
J.-U.
,
Lee
,
S.
,
Unarunotai
,
S.
,
Sun
,
Y.
,
Dunham
,
S.
,
Song
,
T.
,
Ferreira
,
P. M.
,
Alleyene
,
A. G.
,
Paik
,
U.
, and
Roger
,
J. A.
,
2010
, “
Nanoscale, Electrified Liquid Jets for High-Resolution Printing of Charge
,”
Nano Lett.
,
10
(
2
), pp.
584
591
.10.1021/nl903495f
3.
Kim
,
M. J.
,
Yoon
,
J.
,
Park
,
S.-I.
, and
Rogers
,
J.
,
2009
, “
Electrically Interconnected Assemblies of Microscale Device Components by Printing and Molding
,”
Appl. Phys. Lett.
,
95
, p.
214101
10.1063/1.3268464.
4.
Ahmad
,
Z.
,
Rasekh
,
M.
, and
Edirisinghe
,
M.
,
2010
, “
Electrohydrodynamic Direct Writing of Biomedical Polymers and Composites
,”
Macromol. Mater. Eng.
,
295
(
4
), pp.
315
319
.10.1002/mame.200900396
5.
MIT Technology Review,
2007
, “
Nanoscale inkjet printing
,” http://www.technologyreview.com/computing/19373/page1/
6.
Mishra
,
S.
,
Barton
,
K.
,
Alleyne
,
A.
,
Ferreira
,
P.
, and
Rogers
,
J.
,
2010
, “
High Speed Drop-on-Demand Printing With a Pulsed Electro-Hydrodynamic Jet
”,
J. Micromech. Microeng.
,
20
(
9
), p.
095026
.10.1088/0960-1317/20/9/095026
7.
Barton
,
K.
,
Mishra
,
S.
,
Alleyne
,
A.
,
Ferreira
,
P.
, and
Rogers
,
J.
,
2011
, “
Control of High-Resolution Electrohydrodynamic Jet Printing
,”
Control Eng. Practice
,
19
(
11
), pp.
1266
1273
.10.1016/j.conengprac.2011.05.009
8.
Barton
,
K.
,
Mishra
,
S.
,
Shorter
,
K. A.
,
Alleyne
,
A.
,
Ferreira
,
P.
, and
Rogers
,
J.
,
2010
, “
A Desktop Electrohydrodynamic Jet Printing System
,”
IFAC Mechatron.
,
20
(
5
), pp.
611
616
.10.1016/j.mechatronics.2010.05.004
9.
Hartman
,
R. P. A.
,
Borra
,
J. P.
,
Brunner
,
D. J.
,
Marijnissen
,
J. C. M.
, and
Scarlett
,
B.
,
1999
, “
The Evolution of Electrohydrodynamic Sprays Produced in the Cone-Jet Mode—A Physical Model
,”
J. Electrostat.
,
47
, pp.
143
170
.10.1016/S0304-3886(99)00034-0
10.
Hartman
,
R. P. A.
,
Brunner
,
D. J.
,
Camelot
,
D. M. A.
,
Marijnissen
,
J. C. M.
, and
Scarlett
,
B.
,
1999
, “
Electrohydrodynamic Atomization in the Cone-Jet Mode—Physical Modeling of the Liquid Cone and Jet
,”
J. Aerosol Sci.
,
30
(
7
), pp.
823
849
.10.1016/S0021-8502(99)00033-6
11.
Melcher
,
J. R.
, and
Taylor
,
G. I.
,
1969
, “
Electrohydrodynamics: A Review of the Role of Interfacial Shear Stresses
,”
Annu. Rev.: Fluid Mech.
,
1
, pp.
111
146
10.1146/annurev.fl.01.010169.000551.
12.
Juan
,
L. D.
, and
De La Mora
,
F.
,
1997
, “
Charge and Size Distributions of Electrospray Drops
,”
J. Colloid Interface Sci.
,
186
, pp.
280
293
.10.1006/jcis.1996.4654
13.
Cloupeau
,
M.
, and
Prunet-Foch
,
B.
,
1989
, “
Electrostatic Spraying of Liquids in Cone-Jet Mode
,”
J. Electrostat.
,
22
, pp.
135
159
.10.1016/0304-3886(89)90081-8
14.
Cloupeau
,
M.
, and
Prunet-Foch
,
B.
,
1994
, “
Electrohydrodynamic Spraying Functioning Modes: A Critical Review
,”
J. Aerosol Sci.
,
25
(
6
), pp.
1021
1036
.10.1016/0021-8502(94)90199-6
15.
Samarasinghe
,
S. R.
,
Patoriza-Santos
,
I.
,
Edirisinghe
,
M. J.
, and
Liz-Marzan
,
L. M.
,
2008
, “
Fabrication of Nanostructured Gold Films by Electrohydrodynamic Atomization
,”
Appl. Phys. A
,
91
, pp.
141
147
.10.1007/s00339-007-4387-9
16.
Juraschek
,
R.
, and
Rollgen
,
F. W.
,
1998
, “
Pulsation Phenomenon During Electrospray Ionization
,”
Int. J. Mass Spectrosc.
,
177
, pp.
1
15
.10.1016/S1387-3806(98)14025-3
17.
Chen
,
C. H.
,
Saville
,
D. A.
, and
Aksay
,
I. A.
,
2006
, “
Scaling Laws for Pulsed Electrohydrodynamic Drop Formation
,”
Appl. Phys. Lett.
,
89
, p.
124103
.10.1063/1.2356891
18.
Montanero
,
A. M.
, and
Ganan-Calvo
,
J. M.
,
2009
, “
Revision of Capillary Cone-Jet Physics: Electrospray and Flow Focusing
,”
Phys. Rev. E
,
79
(
6
), p.
066305
.10.1103/PhysRevE.79.066305
19.
Fernández de la Mora
,
J.
,
1996
, “
On the Outcome of the Coulombic Fission of a Charged Isolated Drop
,”
J. Colloid Interface Sci.
,
178
(
1
), pp.
209
218
.10.1006/jcis.1996.0109
20.
Ghai
,
I.
,
Samuel
,
J.
,
DeVor
,
R. E.
, and
Kapoor
,
S. G.
,
2013
, “
Analysis of Droplet Spreading on a Rotating Surface and the Prediction of Cooling and Lubrication Performance of an Atomization-Based Cutting Fluid System
,”
ASME J. Manuf. Sci. Eng.
,
135
(
3
), p.
031003
.10.1115/1.4024153
You do not currently have access to this content.