During the electrical-assisted forming process, a significant decrease in the flow stress of the metal is beneficial to reduce the required force for the deformation with high-density electrical current introduced through the materials. It is an alternative manufacturing process of traditional hot forming to improve the formability without the undesirable effects caused by elevated temperature, such as surface oxidation. In this study, tension tests and electrical-assisted embossing process (EAEP) experiments were performed to study the electroplastic (EP) effect with high-density pulse current applied to the specimen and demonstrate the advantage of EAEP. In the first section of this study, specimens with various grain sizes were well prepared and an experimental setup was established to study the flow stress of SS316L sheet in the electroplastic tensile test. Extra cooling system was developed and the temperature increase caused by resistive heating was controlled. Thermal influence caused by resistive heating was thereby reduced. The impacts of the pulse current parameters on the flow stress were investigated. It was observed that the flow stress of the SS316L specimens was significantly reduced by the electroplastic effect. In the second section, the EAEP was proposed to fabricate microchannel feature on metal workpiece. Experiments were conducted to demonstrate the feasibility and advantage of the novel process. The protrusion feature height and microstructure of the grain deformation were measured to investigate the effect of the process parameters, such as the current density, the die geometric dimension, and the grain size of the specimen. Larger feature height was measured owing to the higher density current, which meant the electroplastic effects were helpful in EAEP.

References

1.
Chan
,
W. L.
,
Fu
,
M. W.
, and
Lu
,
J.
,
2011
, “
Experimental and Simulation Study of Deformation Behavior in Micro-Compound Extrusion Process
,”
Mater. Des.
,
32
(
2
), pp.
525
534
.10.1016/j.matdes.2010.08.032
2.
Vollertsen
,
F.
,
Biermann
,
D.
,
Hansen
,
H. N.
,
Jawahir
,
I. S.
, and
Kuzman
,
K.
,
2009
, “
Size Effects in Manufacturing of Metallic Components
,”
CIRP Ann.
,
58
(
2
), pp.
566
587
.10.1016/j.cirp.2009.09.002
3.
Cao
,
J.
,
Krishnan
,
N.
,
Wang
,
Z.
,
Lu
,
H.
,
Liu
,
W. K.
, and
Swanson
,
A.
,
2004
, “
Microforming: Experimental Investigation of the Extrusion Process for Micropins and Its Numerical Simulation Using RKEM
,”
ASME J. Manuf. Sci. Eng.
,
126
(
4
), pp.
642
652
.10.1115/1.1813468
4.
Hu
,
Z.
,
Schubnov
,
A.
, and
Vollertsen
,
F.
,
2012
, “
Tribological Behaviour of DLC-Films and Their Application in Micro Deep Drawing
,”
J. Mater. Process. Technol.
,
212
(
3
), pp.
647
652
.10.1016/j.jmatprotec.2011.10.012
5.
Peng
,
L. F.
,
Hu
,
P.
,
Lai
,
X. M.
,
Mei
,
D. Q.
, and
Ni
,
J.
,
2009
, “
Investigation of Micro/Meso Sheet Soft Punch Stamping Process—Simulation and Experiments
,”
Mater. Des.
,
30
(
3
), pp.
783
790
.10.1016/j.matdes.2008.05.074
6.
Pan
,
W.
, and
Qin
,
Y.
,
2008
, “
FE Analysis of Multi-Cycle Micro-Forming Through Using Closed-Die Upsetting Models and Forward Extrusion Models
,”
J. Mater. Process. Technol.
,
201
(
1–3
), pp.
220
225
.10.1016/j.jmatprotec.2007.11.170
7.
Yeh
,
M. S.
,
Lin
,
H. Y.
,
Lin
,
H. T.
, and
Chang
,
C. B.
,
2006
, “
Superplastic Micro-Forming With a Fine Grained Zn–22Al Eutectoid Alloy Using Hot Embossing Technology
,”
J. Mater. Process. Technol.
,
180
(
1–3
), pp.
17
22
.10.1016/j.jmatprotec.2006.04.013
8.
Wang
,
C. J.
,
Shan
,
D. B.
,
Zhou
,
J.
,
Guo
,
B.
, and
Sun
,
L. N.
,
2007
, “
Size Effects of the Cavity Dimension on the Microforming Ability During Coining Process
,”
J. Mater. Process. Technol.
,
187–188
, pp.
256
259
.10.1016/j.jmatprotec.2006.11.055
9.
Kim
,
G.-Y.
,
Koc
,
M.
, and
Ni
,
J.
,
2008
, “
Experimental and Numerical Investigations on Microcoining of Stainless Steel 304
,”
ASME J. Manuf. Sci. Eng.
,
130
(
4
), p.
041017
.10.1115/1.2953235
10.
Yao
,
Z.
,
Kim
,
G.-Y.
,
Faidley
,
L.
,
Zou
,
Q.
,
Mei
,
D.
, and
Chen
,
Z.
,
2011
, “
Experimental Study of High-Frequency Vibration Assisted Micro/Mesoscale Forming of Metallic Materials
,”
ASME J. Manuf. Sci. Eng.
,
133
(
6
), p.
061009
.10.1115/1.4004612
11.
Yao
,
Z.
,
Kim
,
G.-Y.
,
Faidley
,
L.
,
Zou
,
Q.
,
Mei
,
D.
, and
Chen
,
Z.
,
2012
, “
Effects of Superimposed High-Frequency Vibration on Deformation of Aluminum in Micro/Meso-Scale Upsetting
,”
J. Mater. Process. Technol.
,
212
(
3
), pp.
640
646
.10.1016/j.jmatprotec.2011.10.017
12.
Mei
,
D.
,
Qian
,
M.
,
Liu
,
B.
,
Jin
,
B.
,
Yao
,
Z.
, and
Chen
,
Z.
,
2012
, “
A Micro-Reactor With Micro-Pin-Fin Arrays for Hydrogen Production Via Methanol Steam Reforming
,”
J. Power Sources
,
205
, pp.
367
376
.10.1016/j.jpowsour.2011.12.062
13.
Samm
,
K.
,
Terzi
,
M.
,
Ostendorf
,
A.
, and
Wulfsberg
,
J.
,
2009
, “
Laser-Assisted Micro-Forming Process With Miniaturised Structures in Sapphire Dies
,”
Appl. Surf. Sci.
,
255
(
24
), pp.
9830
9834
.10.1016/j.apsusc.2009.04.100
14.
Chou
,
S. Y.
,
Keimel
,
C.
, and
Gu
,
J.
,
2002
, “
Ultrafast and Direct Imprint of Nanostructures in Silicon
,”
Nature
,
417
, pp.
835
837
.10.1038/nature00792
15.
Peng
,
X.
,
Qin
,
Y.
, and
Balendra
,
R.
,
2004
, “
Analysis of Laser-Heating Methods for Micro-Parts Stamping Applications
,”
J. Mater. Process. Technol.
,
150
(
1–2
), pp.
84
91
.10.1016/j.jmatprotec.2004.01.024
16.
Li
,
D.
, and
Yu
,
E.
,
2009
, “
Computation Method of Metal's Flow Stress for Electroplastic Effect
,”
Mater. Sci. Eng., A
,
505
(
1–2
), pp.
62
64
.10.1016/j.msea.2008.10.040
17.
Guan
,
L.
,
Tang
,
G.
, and
Chu
,
P. K.
,
2010
, “
Recent Advances and Challenges in Electroplastic Manufacturing Processing of Metals
,”
J. Mater. Res.
,
25
(
7
), pp.
1215
1224
.10.1557/JMR.2010.0170
18.
Liao
,
H.
,
Tang
,
G.
,
Jiang
,
Y.
,
Xu
,
Q.
,
Sun
,
S.
, and
Liu
,
J.
,
2011
, “
Effect of Thermo-Electropulsing Rolling on Mechanical Properties and Microstructure of AZ31 Magnesium Alloy
,”
Mater. Sci. Eng., A
,
529
, pp.
138
142
.10.1016/j.msea.2011.09.007
19.
Tang
,
G.
,
Zhang
,
J.
,
Yan
,
Y.
,
Zhou
,
H.
, and
Fang
,
W.
,
2003
, “
The Engineering Application of the Electroplastic Effect in the Cold-Drawing of Stainless Steel Wire
,”
J. Mater. Process. Technol.
,
137
(
1–3
), pp.
96
99
.10.1016/S0924-0136(02)01091-9
20.
Yang
,
D.
, and
Conrad
,
H.
,
1997
, “
Effect of an Electric Field on the Plastic Deformation and Fracture of Polycrystalline NaCl
,”
Mater. Sci. Eng., A
,
225
(
1–2
), pp.
173
183
.10.1016/S0921-5093(96)10846-7
21.
Conrad
,
H.
,
2000
, “
Electroplasticity in Metals and Ceramics
,”
Mater. Sci. Eng., A
,
287
(
2
), pp.
276
287
.10.1016/S0921-5093(00)00786-3
22.
Andrawes
,
J. S.
,
Kronenberger
,
T. J.
,
Perkins
,
T. A.
,
Roth
,
J. T.
, and
Warley
,
R. L.
,
2007
, “
Effects of DC Current on the Mechanical Behavior of AlMg1SiCu
,”
Mater. Manuf. Process.
,
22
(
1
), pp.
91
101
.10.1080/10426910601016004
23.
Jones
,
J. J.
,
Mears
,
L.
, and
Roth
,
J. T.
,
2012
, “
Electrically-Assisted Forming of Magnesium AZ31: Effect of Current Magnitude and Deformation Rate on Forgeability
,”
ASME J. Manuf. Sci. Eng.
,
134
(
3
), p.
034504
.10.1115/1.4006547
24.
Ross
,
C. D.
,
Kronenberger
,
T. J.
, and
Roth
,
J. T.
,
2009
, “
Effect of dc on the Formability of Ti-6Al-4V
,”
ASME J. Eng. Mater. Technol.
,
131
(
3
), p.
031004
.10.1115/1.3078307
25.
Dzialo
,
C. M.
,
Siopis
,
M. S.
,
Kinsey
,
B. L.
, and
Weinmann
,
K. J.
,
2010
, “
Effect of Current Density and Zinc Content During Electrical-Assisted Forming of Copper Alloys
,”
CIRP Ann.
,
59
(
1
), pp.
299
302
.10.1016/j.cirp.2010.03.014
26.
Siopis
,
M. S.
, and
Kinsey
,
B. L.
,
2010
, “
Experimental Investigation of Grain and Specimen Size Effects During Electrical-Assisted Forming
,”
ASME J. Manuf. Sci. Eng.
,
132
(
2
), p.
021004
.10.1115/1.4001039
27.
Fan
,
R.
,
Magargee
,
J.
,
Hu
,
P.
, and
Cao
,
J.
,
2013
, “
Influence of grain size and grain boundaries on the thermal and mechanical behavior of 70/30 brass under electrically-assisted deformation
,”
Mater. Sci. Eng., A
,
574
, pp.
218
225
.10.1016/j.msea.2013.02.066
28.
Man-Kwan
,
N.
,
Rong
,
F.
,
Rui
,
Z.
,
Ed
,
S. I.
,
Robert
,
X. G.
, and
Cao
,
J.
,
2012
, “
Micro Surface-Texturing by Electrically Assisted Micro-Rolling
,”
Proceedings of the 7th International Conference on Micromanufacturing
,
Evanston, IL
, pp.
259
266
.
29.
Magargee
,
J.
,
Fan
,
R.
, and
Cao
,
J.
,
2013
, “
Analysis and Observations of Current Density Sensitivity and Thermally Activated Mechanical Behavior in Electrically-Assisted Deformation
,”
ASME J. Manuf. Sci. Eng.
,
135
(
6
), p.
061022
.10.1115/1.4025882
30.
Magargee
,
J.
,
Morestin
,
F.
, and
Cao
,
J.
,
2013
, “
Characterization of Flow Stress for Commercially Pure Titanium Subjected to Electrically Assisted Deformation
,”
ASME J. Eng. Mater. Technol.
,
135
(
4
), p.
041003
.10.1115/1.4024394
31.
Mai
,
J. M.
,
Peng
,
L. F.
,
Lin
,
Z. Q.
, and
Lai
,
X. M.
,
2011
, “
Experimental Study of Electrical Resistivity and Flow Stress of Stainless Steel 316L in Electroplastic Deformation
,”
Mater. Sci. Eng., A
,
528
(
10–11
), pp.
3539
3544
.10.1016/j.msea.2011.01.058
32.
Liu
,
X.
,
Lan
,
S.
, and
Ni
,
J.
,
2013
, “
Experimental Study of Electro-Plastic Effect on Advanced High Strength Steels
,”
Mater. Sci. Eng., A
,
582
, pp.
211
218
.10.1016/j.msea.2013.03.092
33.
Li
,
D.
,
Yu
,
E.
, and
Liu
,
Z.
,
2013
, “
Microscopic Mechanism and Numerical Calculation of Electroplastic Effect on Metal's Flow Stress
,”
Mater. Sci. Eng., A
,
580
, pp.
410
413
.10.1016/j.msea.2013.05.052
34.
Siopis
,
M. S.
,
Kinsey
,
B. L.
,
Kota
,
N.
, and
Ozdoganlar
,
O. B.
,
2011
, “
Effect of Severe Prior Deformation on Electrical-Assisted Compression of Copper Specimens
,”
ASME J. Manuf. Sci. Eng.
,
133
(
6
), p.
064502
.10.1115/1.4005351
35.
Ross
,
C. D.
,
Irvin
,
D. B.
, and
Roth
,
J. T.
,
2007
, “
Manufacturing Aspects Relating to the Effects of Direct Current on the Tensile Properties of Metals
,”
ASME J. Eng. Mater. Technol.
,
129
(
2
), pp.
342
347
.10.1115/1.2712470
36.
Gronostajski
,
Z.
,
2000
, “
The Constitutive Equations for FEM Analysis
,”
J. Mater. Process. Technol.
,
106
(
1–3
), pp.
40
44
.10.1016/S0924-0136(00)00635-X
37.
Hansen
,
N.
,
2004
, “
Hall–Petch Relation and Boundary Strengthening
,”
Scr. Mater.
,
51
(
8
), pp.
801
806
.10.1016/j.scriptamat.2004.06.002
38.
Lindgren
,
L.-E.
,
Domkin
,
K.
, and
Hansson
,
S.
,
2008
, “
Dislocations, Vacancies and Solute Diffusion in Physical Based Plasticity Model for AISI 316L
,”
Mech. Mater.
,
40
(
11
), pp.
907
919
.10.1016/j.mechmat.2008.05.005
39.
Garion
,
C.
,
Skoczeń
,
B.
, and
Sgobba
,
S.
,
2006
, “
Constitutive Modeling and Identification of Parameters of the Plastic Strain-Induced Martensitic Transformation in 316L Stainless Steel at Cryogenic Temperatures
,”
Int. J. Plast.
,
22
(
7
), pp.
1234
1264
.10.1016/j.ijplas.2005.08.002
40.
Lee
,
W.-S.
, and
Lin
,
C.-F.
,
2001
, “
Impact Properties and Microstructure Evolution of 304L Stainless Steel
,”
Mater. Sci. Eng., A
,
308
(
1–2
), pp.
124
135
.10.1016/S0921-5093(00)02024-4
41.
Mai
,
J.
,
Peng
,
L.
,
Lai
,
X.
, and
Lin
,
Z.
,
2013
, “
Electrical-Assisted Embossing Process for Fabrication of Micro-Channels on 316L Stainless Steel Plate
,”
J. Mater. Process. Technol.
,
213
(
2
), pp.
314
321
.10.1016/j.jmatprotec.2012.09.013
42.
Kalpakjian
,
S.
, and
Schmid
,
S. R.
,
2010
,
Manufacturing Processes for Engineering Materials
,
Pearson Education
,
Upper Saddle River, NJ
.
You do not currently have access to this content.