The method of roll molding is proposed as an alternative to compression molding for low-cost, high-throughput manufacturing of metal-based microchannel structures. Elemental aluminum- and copper- based microchannel arrays with depths of ∼600 μm and depth:width ratios ≥2:1 were successfully fabricated by roll molding at room temperature. Morphologies of roll molded Al and Cu microchannels were examined in detail. Response of roll molding was characterized by measuring depths of roll molded microchannels as a function of the normal loading force per width. This response of roll molding was further shown to scale with the flow stress of roll molded material. Roll molding offers the potential of fabricating microchannel structures with large footprints in a continuous manner.

References

References
1.
Tuckerman
,
D. B.
, and
Pease
,
R. F. W.
,
1981
, “
High Performance Heat Sinking for VLSI
,”
IEEE Electron Device Lett.
,
2
, pp.
126
129
.10.1109/EDL.1981.25367
2.
Incropera
,
F. P.
, and
De Witt
,
D. P.
,
2002
,
Fundamentals of Heat and Mass Transfer
,
5th ed.
,
Wiley
,
New York
.
3.
Lu
,
B.
,
Chen
,
K.
,
Meng
,
W. J.
, and
Mei
,
F.
,
2010
, “
Fabrication, Assembly and Heat Transfer Testing of Low-Profile Copper-Based Microchannel Heat Exchangers
,”
J. Micromech. Microeng.
,
20
, p.
115002
.10.1088/0960-1317/20/11/115002
4.
Benavides
,
G. L.
,
Bieg
,
L. F.
,
Saavedra
,
M. P.
, and
Bryce
,
E. A.
,
2002
, “
High Aspect Ratio Meso-Scale Parts Enabled by Wire Micro-EDM
,”
Microsyst. Technol.
,
8
(
6
), pp.
395
401
.10.1007/s00542-002-0190-x
5.
Adams
,
D. P.
,
Vasile
,
M. J.
,
Benavides
,
G.
, and
Campbell
,
A. N.
,
2001
, “
Micromilling of Metal Alloys With Focused Ion Beam-Fabricated Tools
,”
Precis. Eng.
,
25
(
2
), pp.
107
113
.10.1016/S0141-6359(00)00064-7
6.
Lorenz
,
R. M.
,
Kuyper
,
C. L.
,
Allen
,
P. B.
,
Lee
,
L. P.
, and
Chiu
,
D. T.
,
2004
, “
Direct Laser Writing on Electrolessly Deposited Thin Metal Films for Applications in Micro- and Nano Fluidics
,”
Langmuir
,
20
(
5
), pp.
1833
1837
.10.1021/la036047q
7.
Cao
,
D. M.
,
Guidry
,
D.
,
Meng
,
W. J.
, and
Kelly
,
K. W.
,
2003
, “
Molding of Pb and Zn With Microscale Mold Inserts
,”
Microsyst. Technol.
,
9
(
8
), pp.
559
566
.10.1007/s00542-003-0308-9
8.
Cao
,
D. M.
, and
Meng
,
W. J.
,
2004
, “
Microscale Compression Molding of Al With Surface Engineered LiGA Inserts
,”
Microsyst. Technol.
,
10
(
8/9
), pp.
662
670
.10.1007/s00542-004-0440-1
9.
Cao
,
D. M.
,
Jiang
,
J.
,
Meng
,
W. J.
,
Jiang
,
J. C.
, and
Wang
,
W.
,
2007
, “
Fabrication of High-Aspect-Ratio Microscale Ta Mold Inserts With Micro-Electrical-Discharge-Machining
,”
Microsyst. Technol.
,
13
(
5/6
), pp.
503
510
.10.1007/s00542-006-0198-8
10.
Jiang
,
J.
,
Mei
,
F.
, and
Meng
,
W. J.
,
2008
, “
Fabrication of Metal-Based High-Aspect-Ratio Microscale Structures by Compression Molding
,”
J. Vac. Sci. Technol. A
,
26
(
4
), pp.
745
751
.10.1116/1.2912078
11.
Madou
,
M.
,
2000
,
Fundamentals of Microfabrication
,
CRC Press
,
Boca Raton, FL
.
12.
Tan
,
H.
,
Gilbertson
,
A.
, and
Chou
,
S. Y.
,
1998
, “
Roller Nanoimprint Lithography
,”
J. Vac. Sci. Technol. B
,
16
(
6
), pp.
3926
3928
.10.1116/1.590438
13.
Lan
,
S.
,
Song
,
J. H.
,
Lee
,
M. G.
,
Ni
,
J.
,
Lee
,
N. K.
, and
Lee
,
H. J.
,
2010
, “
Continuous Roll-to-Flat Thermal Imprinting Process for Large-Area Micro-Pattern Replication on Polymer Substrate
,”
Microelectron. Eng.
,
87
(
12
), pp.
2596
2601
.10.1016/j.mee.2010.07.021
14.
Youn
,
S. W.
,
Ogiwara
,
M.
,
Goto
,
H.
,
Takahashi
,
M.
, and
Maeda
,
R.
,
2008
, “
Prototype Development of a Roller Imprint System and Its Application to Large Area Polymer Replication for a Microstructured Optical Device
,”
J. Mater. Process. Technol.
,
202
(
1–3
), pp.
76
85
.10.1016/j.jmatprotec.2007.08.069
15.
Maury
,
P.
,
Turkenburg
,
D.
,
Stroeks
,
N.
,
Giesen
,
P.
,
Barbu
, I
.
,
Meinders
,
E.
,
van Bremen
,
A.
,
Iosad
,
N.
,
van der Werf
,
R.
, and
Onvlee
,
H.
,
2011
, “
Roll-to-Roll UV Imprint Lithography for Flexible Electronics
,”
Microelectron. Eng.
,
88
(
8
), pp.
2052
2055
.10.1016/j.mee.2011.02.022
16.
Sjöström
,
T.
, and
Su
,
B.
,
2011
, “
Micropatterning of Titanium Surfaces Using Electrochemical Micromachining With an Ethylene Glycol Electrolyte
,”
Mater. Lett.
,
65
(
23–24
), pp.
3489
3492
.10.1016/j.matlet.2011.07.103
17.
Sabella
,
S.
,
Shiv Shankar
,
S.
,
Vecchio
,
G.
,
Brunetti
, V
.
,
Rizzello
,
L.
,
Qualtieri
,
A.
,
Martiradonna
,
L.
,
Cingolani
,
R.
, and
Pompa
,
P. P.
,
2010
, “
Room-Temperature Metal Stamping by Microfluidics
,”
Mater. Lett.
,
64
, pp.
41
44
.10.1016/j.matlet.2009.09.066
18.
Zhou
,
R.
,
Cao
,
J.
,
Ehmann
,
K.
, and
Xu
,
C.
,
2011
, “
An Investigation on Deformation-Based Surface Texturing
,”
ASME J. Manuf. Sci. Eng.
,
133
(
6
), p.
061017
.10.1115/1.4005459
19.
Groover
,
M. P.
,
2010
,
Fundamentals of Modern Manufacturing: Materials Processes, and Systems
,
4th ed.
,
Wiley
,
Hoboken, NJ
.
20.
2004
,
ASM Handbook
Vol.
9
:
Metallography and Microstructures
,
ASM International
,
Materials Park, OH
.
21.
Meyers
,
M. A.
, and
Chawla
,
K. K.
,
1984
,
Mechanical Metallurgy: Principles and Applications
,
Prentice Hall
,
New Jersey
.
22.
Tabor
,
D.
,
2000
,
The Hardness of Metals
,
Clarendon
,
Oxford
.
23.
ImageJ is an Open Access Software Supplied by the Research Services Branch of National Institutes of Health. Additional Information can be Obtained from http://rsbweb.nih.gov/
24.
Mei
,
F.
,
Chen
,
K.
,
Jiang
,
J.
, and
Meng
,
W. J.
,
2010
, “
Scaling the Response of Microscale Compression Molding of Elemental Cu in the Presence of Dynamic Recrystallization
,”
Acta Mater.
,
58
, pp.
2638
2645
.10.1016/j.actamat.2009.12.050
25.
Lu
,
B.
,
Meng
,
W. J.
, and
Mei
,
F.
,
2013
, “
Experimental Investigation of Cu-Based, Double-Layered, Microchannel Heat Exchangers
,”
J. Micromech. Microeng.
,
23
, p.
035017
.10.1088/0960-1317/23/3/035017
You do not currently have access to this content.