Friction effects during a progressive microforming process for production of micropins of various diameters were experimentally investigated and were analytically modeled, using a hybrid friction model. The response surface method and ANOVA analysis were used to generalize the findings for various pin diameters. Besides, it was shown that to get an accurate result in simulation, the friction model must be considered locally instead of a global friction model for the whole process. The effect of friction factor on the final micropart dimensions (the effect on the instantaneous location of the neutral plane) and the forming pressure were investigated. The results showed a reduction in the friction factor as die diameter increased. Following that, the optimum frictional condition to obtain the highest micropart aspect ratio was defined as the maximum friction on the interface between the die upper surface and the punch surface, together with a minimum friction inside the die orifice.

References

References
1.
Ghassemali
,
E.
,
Tan
,
M.-J.
,
Jarfors
,
A. W.
, and
Lim
,
S. C. V.
,
2013
, “
Progressive Microforming Process: Towards the Mass Production of Micro-Parts Using Sheet Metal
,”
Int. J. Adv. Manuf. Technol.
,
66
(
5–8
), pp.
611
621
.10.1007/s00170-012-4352-4
2.
Engel
,
U.
, and
Eckstein
,
R.
,
2002
, “
Microforming—From Basic Research to Its Realization
,”
J. Mater. Process. Technol.
,
125–126
, pp.
35
44
.10.1016/S0924-0136(02)00415-6
3.
Bay
,
N. W. T.
,
2002
, “
Tribology in Metal Forming
,”
Japan
,
1
, pp.
309
320
.
4.
Becker
,
P.
,
Jeon
,
H. J.
,
Chang
,
C. C.
, and
Bramley
,
A. N.
,
2003
, “
A Geometric Approach to Modelling Friction in Metal Forming
,”
CIRP Ann. - Manuf. Technol.
,
52
(Compendex), pp.
209
212
.10.1016/S0007-8506(07)60567-8
5.
Guo
,
B.
,
Gong
,
F.
,
Wang
,
C.
, and
Shan
,
D.
,
2010
, “
Size Effect on Friction in Scaled Down Strip Drawing
,”
J. Mater. Sci.
,
45
(
15
), pp.
4067
4072
.10.1007/s10853-010-4492-6
6.
Liu
,
F.
,
Peng
,
L. F.
, and
Lai
,
X. M.
,
2007
, “
Study on the Size Effect and the Effect of the Friction Coefficient on the Micro-Extrusion Process
,”
Robotic Welding, Intelligence and Automation
(Lecture Notes in Control and Information Sciences Vol.
362)
,
Springer-Verlag
,
Berlin, Germany
.
7.
Mori
,
L. F.
,
Krishnan
,
N.
,
Cao
,
J.
, and
Espinosa
,
H. D.
,
2007
, “
Study of the Size Effects and Friction Conditions in Microextrusion—Part II: Size Effect in Dynamic Friction for Brass-Steel Pairs
,”
J. Manuf. Sci. Eng.
,
129
(
4
), pp.
677
689
.10.1115/1.2738131
8.
Tiesler
,
N.
,
Engel
,
U.
, and
Geiger
,
M.
,
1999
, “
Forming of Microparts—Effects of Miniaturization on Friction
,” 6th International Conference on Technology of Plasticity (ICTP), 1999, Germany, Vol.
II
, pp.
889
894
.
9.
Chan
,
W. L.
, and
Fu
,
M. W.
,
2012
, “
Experimental Studies of Plastic Deformation Behaviors in Microheading Process
,”
J. Mater. Process. Technol.
,
212
(
7
), pp.
1501
1512
.10.1016/j.jmatprotec.2012.02.013
10.
Engel
,
U.
,
2006
, “
Tribology in Microforming
,”
Wear
,
260
(
3
), pp.
265
273
.10.1016/j.wear.2005.04.021
11.
Geißdörfer
,
S.
,
Engel
,
U.
, and
Geiger
,
M.
,
2006
, “
Fe-Simulation of Microforming Processes Applying a Mesoscopic Model
,”
Int. J. Mach. Tools Manuf.
,
46
(
11
), pp.
1222
1226
.10.1016/j.ijmachtools.2006.01.019
12.
Peng
,
L.
,
Lai
,
X.
,
Lee
,
H.-J.
,
Song
,
J.-H.
, and
Ni
,
J.
,
2010
, “
Friction Behavior Modeling and Analysis in Micro/Meso Scale Metal Forming Process
,”
Mater. Des.
,
31
(
4
), pp.
1953
1961
.10.1016/j.matdes.2009.10.040
13.
Geiger
,
M.
,
Kleiner
,
M.
,
Eckstein
,
R.
,
Tiesler
,
N.
, and
Engel
,
U.
,
2001
, “
Microforming
,”
CIRP Ann. - Manuf. Technol.
,
50
(
2
), pp.
445
462
.10.1016/S0007-8506(07)62991-6
14.
Jeon
,
J.
, and
Bramley
,
A. N.
,
2007
, “
A Friction Model for Microforming
,”
Int. J. Adv. Manuf. Technol.
,
33
(Compendex), pp.
125
129
.10.1007/s00170-006-0608-1
15.
Geiger
,
M.
,
Engel
,
U.
, and
Vollertsen
,
F.
,
1992
, “
In Situ Ultrasonic Measurement of the Real Contact Area in Bulk Metal Forming Processes
,”
CIRP Ann. - Manuf. Technol.
,
41
(
1
), pp.
255
258
.10.1016/S0007-8506(07)61198-6
16.
Buschhausen
,
A.
,
Weinmann
,
K.
,
Lee
,
J. Y.
, and
Altan
,
T.
,
1992
, “
Evaluation of Lubrication and Friction in Cold Forging Using a Double Backward-Extrusion Process
,”
J. Mater. Process. Technol.
,
33
(
1–2
), pp.
95
108
.10.1016/0924-0136(92)90313-H
17.
Bay
,
N.
,
Wibom
,
O.
, and
Nielsen
,
J. A.
,
1995
, “
A New Friction and Lubrication Test for Cold Forging
,”
CIRP Ann. - Manuf. Technol.
,
44
(
1
), pp.
217
221
.10.1016/S0007-8506(07)62311-7
18.
Ebrahimi
,
R.
, and
Najafizadeh
,
A.
,
2004
, “
A New Method for Evaluation of Friction in Bulk Metal Forming
,”
J. Mater. Process. Technol.
,
152
(
2
), pp.
136
143
.10.1016/j.jmatprotec.2004.03.029
19.
Merklein
,
M.
,
Engel
,
U.
, and
Vierzigmann
,
U.
,
2009
, “
Novel Setup for the Investigation of Tribological Behavior of Sheet Metal Surfaces
,”
Int. J. Mater. Form.
,
2
(
1
), pp.
233
236
.10.1007/s12289-009-0472-2
20.
Taureza
,
M.
,
Castagne
,
S.
,
Aue-U-Lan
,
Y.
, and
Lim
,
S. C. V.
,
2012
, “
The Influence of Die Geometry and Workpiece Mechanical Properties in T-Shape Friction Test
,”
J. Mater. Process. Technol.
,
212
(
11
), pp.
2413
2423
.10.1016/j.jmatprotec.2012.06.021
21.
Chan
,
W. L.
,
Fu
,
M. W.
, and
Lu
,
J.
,
2011
, “
Experimental and Simulation Study of Deformation Behavior in Micro-Compound Extrusion Process
,”
Mater. Des.
,
32
(
2
), pp.
525
534
.10.1016/j.matdes.2010.08.032
22.
Robinson
,
P.
,
1990
, “
Properties of Wrought Coppers and Copper Alloys
,”
Properties and Selection: Nonferrous Alloys and Special-Purpose Materials
, Vol
2
, ASM Handbook,
ASM International
, pp.
265
345
.
23.
Jiang
,
C.-P.
, and
Chen
,
C.-C.
,
2011
, “
Grain Size Effect on the Springback Behavior of the Microtube in the Press Bending Process
,”
Mater. Manuf. Process.
,
27
(
5
), pp.
512
518
.10.1080/10426914.2011.593230
24.
Cao
,
J.
,
Zhuang
,
W.
,
Wang
,
S.
, and
Lin
,
J.
,
2010
, “
Development of a Vgrain System for Cpfe Analysis in Micro-Forming Applications
,”
Int. J. Adv. Manuf. Technol.
,
47
(
9
), pp.
981
991
.10.1007/s00170-009-2135-3
25.
Ghassemali
,
E.
,
Tan
,
M.-J.
,
Wah
,
C. B.
,
Jarfors
,
A. E. W.
, and
Lim
,
S. C. V.
,
2013
, “
Grain Size and Workpiece Dimension Effects on Material Flow in an Open-Die Micro-Forging/Extrusion Process
,”
Mater. Sci. Eng. A
,
582
(
0
), pp.
379
388
.10.1016/j.msea.2013.06.023
26.
Huang
,
M. N.
, and
Tzou
,
G. Y.
,
2002
, “
Study on Compression Forming of a Rotating Disk Considering Hybrid Friction
,”
J. Mater. Process. Technol.
,
125–126
(
0
), pp.
421
426
.10.1016/S0924-0136(02)00293-5
27.
Hassan
,
M. A.
,
Ahmed
,
K. I. E.
, and
Takakura
,
N.
,
2012
, “
A Developed Process for Deep Drawing of Metal Foil Square Cups
,”
J. Mater. Process. Technol.
,
212
(
1
), pp.
295
307
.10.1016/j.jmatprotec.2011.09.015
28.
Bay
,
N.
,
1987
, “
Friction Stress and Normal Stress in Bulk Metal-Forming Processes
,”
J. Mech. Work. Technol.
,
14
(
2
), pp.
203
223
.10.1016/0378-3804(87)90061-1
29.
Daw-Kwei
,
L.
,
2009
, “
A Simple Dry Friction Model for Metal Forming Process
,”
J. Mater. Process. Technol.
,
209
(
5
), pp.
2361
2368
.10.1016/j.jmatprotec.2008.05.027
30.
Schey
,
J. A.
,
1984
,
Tribology in Metalworking
,
American Society for Metals
, New York.
31.
Ghassemali
,
E.
,
Tan
,
M.-J.
,
Jarfors
,
A. E. W.
, and
Lim
,
S. C. V.
,
2013
, “
Optimization of Axisymmetric Open-Die Micro-Forging/Extrusion Processes: An Upper Bound Approach
,”
Int. J. Mech. Sci.
,
71
(
0
), pp.
58
67
.10.1016/j.ijmecsci.2013.03.010
32.
Ghassemali
,
E.
,
Jarfors
,
A.
,
Tan
,
M.-J.
, and
Lim
,
S.
,
2013
, “
On the Microstructure of Micro-Pins Manufactured by a Novel Progressive Microforming Process
,”
Int. J. Mater. Form.
,
6
(
1
), pp.
65
74
.10.1007/s12289-011-1073-4
33.
Avitzur
,
B.
,
1968
,
Metal Forming: Processes and Analysis
, McGraw Hill,
New York
.
34.
Avitzur
,
B.
, and
Sauerwine
,
F.
,
1978
, “
Limit Analysis of Hollow Disk Forging—Part 1: Upper Bound
,”
J. Eng. Ind.
,
100
(
3
), pp.
340
344
.10.1115/1.3439437
35.
Chan
,
W. L.
, and
Fu
,
M. W.
,
2013
, “
Meso-Scaled Progressive Forming of Bulk Cylindrical and Flanged Parts Using Sheet Metal
,”
Mater. Des.
,
43
(
0
), pp.
249
257
.10.1016/j.matdes.2012.07.004
You do not currently have access to this content.