Carbon nanoscrolls (CNS) of various forms are observed when highly ordered pyrolytic graphite (HOPG) is mechanically exfoliated using a wedge. We present two hypothesis of how such scrolls form. The first hypothesis is based on microscopy evidence of pre-existing folds in layer edges of the HOPG. The second hypothesis is based on the literature evidence that graphene sheets when subject to deformation can result in defects on the torn edges. The sample preparation process can induce such defects in the HOPG layers. We show using molecular simulations that the interaction of the moving wedge with certain fold geometries can trigger scroll formation, confirming the first hypothesis. To test the second hypothesis, we show using molecular simulations, that layers with edge defects, upon interacting with the moving wedge, can also form scrolls. In reality, both these factors could simultaneously cause scrolls to form. Opportunities exist in fine-tuning this wedge-based mechanical exfoliation process to synthesize CNS for use in potential applications.

References

References
1.
Zhang
,
Z.
, and
Li
,
T.
,
2010
, “
Carbon Nanotube Initiated Formation of Carbon Nanoscrolls
,”
Appl. Phys. Lett.
,
97
(
8
), pp.
081909
081911
.10.1063/1.3479050
2.
Xie
,
X.
,
Ju
,
L.
,
Feng
,
X. F.
,
Sun
,
Y. H.
,
Zhou
,
R. F.
,
Liu
,
K.
,
Fan
,
S. S.
,
Li
,
Q.
, and
Jiang
,
K. L.
,
2009
, “
Controlled Fabrication of High-Quality Carbon Nanoscrolls From Monolayer Graphene
,”
Nano Lett.
,
9
(
7
), pp.
2565
2570
.10.1021/nl900677y
3.
Viculis
,
L. M.
,
Mack
,
J. J.
, and
Kaner
,
R. B.
,
2003
, “
A Chemical Route to Carbon Nanoscrolls
,”
Science
,
299
(
5611
), pp.
1361
1361
.10.1126/science.1078842
4.
Martins
,
B. V. C.
, and
Galvão
,
D. S.
,
2010
, “
Curved Graphene Nanoribbons: Structure and Dynamics of Carbon Nanobelts
,”
Nanotechnology
,
21
(
7
), pp.
075710
075716
.10.1088/0957-4484/21/7/075710
5.
Shi
,
X.
,
Cheng
,
Y.
,
Pugno
,
N. M.
, and
Gao
,
H.
,
2010
, “
Tunable Water Channels With Carbon Nanoscrolls
,”
Small
,
6
(
6
), pp.
739
744
.10.1002/smll.200902286
6.
Li
,
J. L.
,
Peng
,
Q. S.
,
Bai
,
G. Z.
, and
Jiang
,
W.
,
2005
, “
Carbon Scrolls Produced by High Energy Ball Milling of Graphite
,”
Carbon
,
43
(
13
), pp.
2830
2833
.10.1016/j.carbon.2005.06.007
7.
Bacon
,
R.
,
1960
, “
Growth, Structure and Properties of Graphite Whiskers
,”
J. Appl. Phys.
,
31
(
2
), pp.
283
290
.10.1063/1.1735559
8.
Zhang
,
Y.
,
Tan
,
Y.-W.
,
Stormer
,
H. L.
, and
Kim
,
P.
,
2005
, “
Experimental Observation of the Quantum Hall Effect and Berry's Phase in Graphene
,”
Nature
,
438
(
7065
), pp.
201
204
.10.1038/nature04235
9.
Shioyama
,
H.
, and
Akita
,
T.
,
2003
, “
A New Route to Carbon Nanotubes
,”
Carbon
,
41
(
1
), pp.
179
198
.10.1016/S0008-6223(02)00278-6
10.
Savoskin
,
M. V.
,
Mochalin
,
V. N.
,
Yaroshenko
,
A. P.
,
Lazareva
,
N. I.
,
Konstantinova
,
T. E.
,
Barsukov
,
I. V.
, and
Prokofiev
,
I. G.
,
2007
, “
Carbon Nanoscrolls Produced From Acceptor-Type Graphite Intercalation Compounds
,”
Carbon
,
45
(
14
), pp.
2797
2800
.10.1016/j.carbon.2007.09.031
11.
Patra
,
N.
,
Wang
,
B.
, and
KráL
,
P.
,
2009
, “
Nanodroplet Activated and Guided Folding of Graphene Nanostructures
,”
Nano Lett.
,
9
(
11
), pp.
3766
3771
.10.1021/nl9019616
12.
Braga
,
S. F.
,
Coluci
,
V. R.
,
Legoas
,
S. B.
,
Giro
,
R.
,
Galvão
,
D. S.
, and
Baughman
,
R. H.
,
2004
, “
Structure and Dynamics of Carbon Nanoscrolls
,”
Nano Lett.
,
4
(
5
), pp.
881
884
.10.1021/nl0497272
13.
Jayasena
,
B.
, and
Subbiah
,
S.
,
2011
, “
A Novel Mechanical Cleavage Method for Synthesizing Few-Layer Graphenes
,”
Nanoscale Res. Lett.
,
6
(
1
), pp.
95
101
10.1186/1556-276X-6-95
14.
Jayasena
,
B.
,
Subbiah
,
S.
, and
Reddy
,
C. D.
,
2012
, “
A Mechanical Route to Carbon Nanoscrolls
,”
Nanotechnology (IEEE-NANO)
,
Birmingham, UK
, pp.
1
5
.
15.
Shenoy
,
V. B.
,
Reddy
,
C. D.
, and
Zhang
,
Y.-W.
,
2010
, “
Spontaneous Curling of Graphene Sheets With Reconstructed Edges
,”
ACS Nano
,
4
(
8
), pp.
4840
4844
.10.1021/nn100842k
16.
Girit
,
Ç. Ö.
,
Meyer
,
J. C.
,
Erni
,
R.
,
Rossell
,
M. D.
,
Kisielowski
,
C.
,
Yang
,
L.
,
Park
,
C.-H.
,
Crommie
,
M. F.
,
Cohen
,
M. L.
,
Louie
,
S. G.
, and
Zettl
,
A.
,
2009
, “
Graphene at the Edge: Stability and Dynamics
,”
Science
,
323
(
5922
), pp.
1705
1708
.10.1126/science.1166999
17.
Plimpton
,
S.
,
1995
, “
Fast Parallel Algorithms for Short-Range Molecular Dynamics
,”
J. Comput. Phys.
,
117
(
1
), pp.
1
19
.10.1006/jcph.1995.1039
18.
Stuart
,
S. J.
,
Tutein
,
A. B.
, and
Harrison
,
J. A.
,
2000
, “
A Reactive Potential for Hydrocarbons With Intermolecular Interactions
,”
J. Chem. Phys.
,
112
(
14
), pp.
6472
6486
.10.1063/1.481208
19.
Jayasena
,
B.
,
Reddy
,
C. D.
, and
Subbiah
,
S.
,
2013
, “
Separation, Folding and Shearing of Graphene Layers During Wedge-Based Mechanical Exfoliation
,”
Nanotechnology
,
24
(
20
), pp.
205301
205308
.10.1088/0957-4484/24/20/205301
20.
Koskinen
,
P.
,
Malola
,
S.
, and
Häkkinen
,
H.
,
2009
, “
Evidence for Graphene Edges Beyond Zigzag and Armchair
,”
Phys. Rev. B
,
80
(
7
), pp.
073401
073403
.10.1103/PhysRevB.80.073401
21.
Reddy
,
C. D.
,
Ramasubramaniam
,
A.
,
Shenoy
,
V. B.
, and
Zhang
,
Y.-W.
,
2009
, “
Edge Elastic Properties of Defect-Free Single-Layer Graphene Sheets
,”
Appl. Phys. Lett.
,
94
(
10
), pp.
101904
101906
.10.1063/1.3094878
22.
Jayasena
,
B.
,
Subbiah
,
S.
, and
Reddy
,
C. D.
,
2013
, “
Characteristics of Ultra-Thin Layers Produced by Oriented Sectioning of Highly Ordered Pyrolytic Graphite Parallel to the Basal Plane
,” (unpublished).
23.
Shi
,
X.
,
Cheng
,
Y.
,
Pugno
,
N. M.
, and
Gao
,
H.
,
2010
, “
A Translational Nanoactuator Based on Carbon Nanoscrolls on Substrates
,”
Appl. Phy. Lett.
,
96
(
5
), pp.
053115
053115-3
.10.1063/1.3302284
You do not currently have access to this content.