This paper is one of three papers exploring and confirming a novel high rate nanomanufacturing method using laser to induce and accelerate chemical synthesis and deposition of nanotubes. We have shown elsewhere that the growth rate of SnO2 nanotubes by this method is a few orders faster than that by the state of the art electrochemical deposition method, the growth rate of the nanotubes is favorably affected by increasing the laser power under a constant number of scanning passes, and the process can grow nanotubes coalesced from ultrasmall particle size as small as 2 nm (Liu and Liu, 2013, "Laser Induced Chemical Solution Deposition of Nanomaterials: A Novel Process Demonstrated by Manufacturing SnO2 Nanotubes," Manuf. Lett., 1(1), pp. 42–35). In the second paper, we have shown that this novel method is generic, demonstrated by synthesizing various metal oxide and sulfide nanotubes (Liu and Liu, "Laser-Induced Solution Synthesis and Deposition: A Generic Method to Make Metal Chalcogenide Nanotubes at High Rate With High Consistency," J. Nanoeng. Nanosyst. (accepted)). Since the performance and properties of nanomaterials are highly dependent on its structure, we explore here how the basic processing variables affect the growth rate and crystal size. Our initial finding is that (1) the growth rate can be increased by increasing the pH value of the solution, resulting in little change on the crystal size and (2) the crystal size of the manufactured ferrihydrite nanotube arrays can be controlled by changing laser scanning passes. We found the increase of the pH value from 1.33 to 2.16 almost tripled the growth rate of ferrihydrite nanotubes, while the crystal size remained little changed as revealed by the transmission electron microscopy studies. However, increasing the number of laser scanning passes at a given power could coarsen the ferrihydrite nanocrystals. The crystal structure of the nanotubes could be converted to haematite by dry furnace annealing. These initial findings demonstrated the capability and controllability of the novel process.

References

References
1.
Liu
,
Z.
, and
Liu
,
C. R.
,
2013
, “
Laser Induced Chemical Solution Deposition of Nanomaterials: A Novel Process Demonstrated by Manufacturing SnO2 Nanotubes
,”
Manuf. Lett.
,
1
(
1
), pp.
42
35
.10.1016/j.mfglet.2013.09.002
2.
Liu
,
Z.
, and
Liu
,
C. R.
, “
Laser-Induced Solution Synthesis and Deposition: A Generic Method to Make Metal Chalcogenide Nanotubes at High Rate With High Consistency
,”
J. Nanoeng. Nanosyst.
(accepted)10.1177/1740349913515202.
3.
Park
,
J.
,
An
,
K.
,
Hwang
,
Y.
,
Park
,
J.
,
Noh
,
H.
,
Kim
,
J.
,
Park
,
J.
,
Hwang
,
N.
, and
Hyeon
,
T.
,
2004
, “
Ultra-Large-Scale Syntheses of Monodisperse Nanocrystals
,”
Nature Mater.
,
3
, pp.
891
895
.10.1038/nmat1251
4.
Volder
,
M. F. L.
,
Tawfick
,
S. H.
,
Baughman
,
R. H.
, and
Hart
,
A. J.
,
2013
, “
Carbon Nanotubes: Present and Future Commercial Application
,”
Science
,
339
, pp.
535
539
.10.1126/science.1222453
5.
Choucair
,
M.
,
Thordarson
,
P.
, and
Stride
,
J.
,
2009
, “
Gram-Scale Production Of Graphene Based On Solvothermal Synthesis And Sonication
,”
Nat. Nanotechnol.
,
4
, pp.
30
33
.10.1038/nnano.2008.365
6.
Bilecka
,
I.
, and
Niederberger
,
M.
,
2010
, “
Microwave Chemistry for Inorganic Nanomaterials Synthesis
,”
Nanoscale
,
2
, pp.
1358
1374
.10.1039/b9nr00377k
7.
Wang
,
X.
,
Li
,
W.
,
Harrington
,
R.
,
Liu
,
F.
,
Parise
,
J.
,
Feng
,
X.
, and
Sparks
,
D.
,
2013
, “
Effect of Ferrihydrite Crystallite Size on Phosphate Adsorption Reactivity
,”
Environ. Sci. Technol.
,
47
(
18
), pp.
10322
10331
.
8.
Cheng
,
K.
,
He
,
Y. P.
,
Miao
,
Y. M.
,
Zou
,
B. S.
,
Wang
,
Y. G.
,
Wang
,
T. H.
,
Zhang
,
X. T.
, and
Du
,
Z. L.
,
2006
, “
Quantum Size Effect on Surface Photovoltage Spectra: Alpha-FeO Nanocrystals on the Surface of Monodispersed Silica Microsphere
,”
J. Phys. Chem. B
,
110
(
14
), pp.
7259
7264
.10.1021/jp057593q
9.
Jun
,
Y.
,
Huh
,
Y.
,
Choi
,
J.
,
Lee
,
J.
,
Song
,
H.
,
Sungjun
,
S.
,
Yoon
,
S.
,
Kim
,
K. S.
,
Shin
,
J.
,
Suh
,
J.
, and
Cheon
,
J.
,
2005
, “
Nanoscale Size Effect of Magnetic Nanocrystals and Their Utilization for Cancer Diagnosis via Magnetic Resonance Imaging
,”
J. Am. Chem. Soc.
,
127
(
16
), pp.
5732
5733
.10.1021/ja0422155
10.
Duffus
,
C.
,
Camp
,
P.
, and
Alexander
,
A.
,
2009
, “
Spatial Control of Crystal Nucleation in Agarose Gel
,”
J. Am. Chem. Soc.
,
131
(
33
), pp.
11676
11677
.10.1021/ja905232m
11.
Gat
,
A.
,
Gerzberg
,
L.
,
Gibbons
,
J. F.
,
Magee
,
T. J.
,
Peng
,
J.
, and
Hong
,
J. D.
,
1978
, “
CW Laser Anneal of Polycrystalline Silicon: Crystalline Structure, Electrical-Properties
,”
Appl. Phys. Lett.
,
33
(
8
), pp.
775
778
.10.1063/1.90501
12.
Shima
,
A.
, and
Hiraiwa
,
A.
,
2006
, “
Ultra-Shallow Junction Formation by Non-Melt Laser Spike Annealing and Its Application to Complementary Metal Oxide Semiconductor Devices in 65-nm Node
,”
Jpn. J. Appl. Phys., Part 1
45
(
7
), pp.
5708
5715
.10.1143/JJAP.45.5708
13.
Jung
,
B.
,
Sha
,
J.
,
Paredes
,
F.
,
Ober
,
C. K.
,
Thompson
,
M. O.
,
Chandhok
,
M.
, and
Younkin
,
T. R.
,
2010
, “
Sub-Millisecond Post Exposure Bake of Chemically Amplified Resists by CO2 Laser Heat Treatment
,”
Proc. SPIE
,
7639
, pp.
1
9
.
14.
Singer
,
J. P.
,
Lin
,
P.-T.
,
Kooi
,
S. E.
,
Kimerling
,
L. C.
,
Michel
,
J.
, and
Thomas
,
E. L.
,
2013
, “
Direct-Write Thermocapillary Dewetting of Polymer Thin Films by a Laser-Induced Thermal Gradient
,”
Adv. Mater.
25
(
42
), pp.
6100
6105
.10.1002/adma.201302777
15.
Gutfeld
,
R. J.
,
1987
, “
Laser-Enhanced Patterning Using Photothermal Effects: Maskless Plating And Etching
,”
J. Opt. Soc. Am. B
,
4
(
2
), pp.
272
280
.10.1364/JOSAB.4.000272
16.
Blum
,
S. E.
,
Kovac
,
Z.
, and
Gutfeld
,
R. J.
,
1980
, “
Maskless Method for Electroless Plating Patterns
,” U.S. Patent No. 4,239,789.
17.
Lachish-Zalait
,
A.
,
Zbaida
,
D.
,
Klein
,
E.
, and
Elbaum
,
M.
,
2001
, “
Direct Surface Patterning From Solutions: Localized Microchemistry Using A Focused Laser
,”
Adv. Funct. Mater.
,
11
(
3
), pp.
218
223
.10.1002/1616-3028(200106)11:3<218::AID-ADFM218>3.0.CO;2-T
18.
Sugiyama
,
T.
, and
Masuhara
,
H.
,
2011
, “
Laser-Induced Crystallization and Crystal Growth
,”
Chem. – Asian J.
,
6
, pp.
2818
2889
.10.1002/asia.201100105
19.
Lee Penn
,
R.
,
2007
, “
Resolving and Elusive Structure
,”
Science
,
316
(
5832
), pp.
1704
1705
.10.1126/science.1144002
20.
Cornell
,
R. M.
, and
Schwetmann
,
U.
,
1996
,
The Iron Oxides
,
VCH
,
Weinheim, Germany
, pp. 4, 99, 120,
323
327
.
21.
Smith
,
S.
,
Page
,
K.
,
Kim
,
H.
,
Campbell
,
B.
,
Boerio-Goates
,
J.
, and
Woodfield
,
B.
,
2012
, “
Novel Synthesis and Structural Analysis of Ferrihydrite
,”
Inorg. Chem.
,
51
(
11
), pp.
6421
6424
.10.1021/ic300937f
22.
Wu
,
Z.
,
Zhang
,
M.
,
Yu
,
K.
,
Zhang
,
S.
, and
Xie
,
Y.
,
2008
, “
Self-Assembled Double-Shelled Ferrihydrite Hollow Spheres With A Tunable Aperature
,”
Chem. Eur. J.
,
14
(
17
), pp.
5346
5352
.10.1002/chem.200701945
23.
Lauwiner
,
M.
,
Rys
,
P.
, and
Wissmann
,
J.
,
1998
, “
Reduction of Aromatic Nitro Compounds With Hydrazine Hydrate in the Presence of an Iron Oxide Hydroxide Catalyst. I. The Reduction of Monosubstituted Nitrobenzenes With Hydrazine Hydrate in the Presence Of Ferrihydrite
,”
Appl. Catal., A
172
(
1
), pp.
141
148
.10.1016/S0926-860X(98)00110-0
24.
Huang
,
H. H.
,
Lu
,
M. C.
, and
Chen
,
J. H.
,
2000
, “
Catalytic Decomposition of Hydrogen Peroxide and 2-Chlorophenol With Iron Oxides
,”
Water Res.
,
35
(
9
), pp.
2291
2299
.10.1016/S0043-1354(00)00496-6
25.
Zhao
,
J.
,
Huggins
,
F. E.
,
Feng.
Z.
,
Lu
,
F.
,
Shah
,
N.
, and
Huffman
,
G. P.
,
1993
, “
Structure of a Nanophase Iron Oxide Catalyst
,”
J. Catal.
,
143
(
2
), pp.
499
509
.10.1006/jcat.1993.1293
26.
Janney
,
D.
,
Cowley
,
J.
, and
Buseck
,
P.
,
2000
, “
Transmission Electron Microscopy Of Synthetic 2- and 6-Line Ferrihydrite
,”
Clays Clay Miner.
,
48
(
1
), pp.
111
119
.10.1346/CCMN.2000.0480114
27.
Schwetmann
,
U.
, and
Cornell
,
R. M.
,
2000
,
Iron Oxides in the Laboratory
,
2nd ed.
,
VCH
,
Weinheim, Germany
, Chap. 8.
28.
Wang
,
Q.
,
Nemoto
,
M.
,
Li
,
D.
,
Weaver
,
J.
,
Weden
,
B.
,
Stegemeier
,
J.
,
Bozhilov
,
N.
,
Wood
,
L.
,
Milliron
,
G.
,
Kim
,
C.
,
DiMasi
,
E.
, and
Kisailus
,
D.
,
2013
, “
Biomineralization: Phase Transformations and Structural Developments in the Radular Teeth of Cryptochiton stelleri
,”
Adv. Funct. Mater.
,
23
(
23
), pp.
2908
2917
.10.1002/adfm.201202894
29.
Matijevic
,
E.
,
1985
, “
Production of Monodispersed Colloidal Particle
,”
Annu. Rev. Mater. Sci.
,
15
, pp.
483
516
.
30.
Niesen
,
T. P.
, and
De Guire
,
M. R.
,
2001
, “
Review: Deposition of Ceramic Thin Films at Low Temperatures from Aqueous Solutions
,”
J. Electroceram.
,
6
, pp.
169
207
.10.1023/A:1011496429540
31.
Colfen
,
M.
, and
Antonietti
,
M.
,
2008
,
Mesocrystals and Nonclassical Crystallization
,
John Wiley and Sons
, New York, Chaps. 2, 4, and 7.
32.
Mullin
,
J. W.
,
1992
,
Crystallization
,
3rd ed.
,
Butterworth Heinemann
, UK, Chap. 5.
33.
Jambor
,
J.
, and
Dutrizac
,
J.
,
1998
, “
Occurrence and Constitution of Natural and Synthetic Ferrihydrite, a Widespread Iron Oxyhydroxide
,”
Chem. Rev.
,
98
(
7
), pp.
2549
2585
.10.1021/cr970105t
34.
Chen
,
J.
,
Xu
,
L.
,
Li
,
W.
, and
Gou
,
X.
,
2005
, “
Alpha-Fe2O3 Nanotubes in Gas Sensor and Lithium-Ion Battery Applications
,”
Adv. Mater.
,
17
(
5
), pp.
582
586
.10.1002/adma.200401101
35.
Wang
,
Z.
,
Luan
,
D.
,
Madhavi
,
S.
,
Li
,
C. M.
, and
Lou
,
X. W.
,
2011
, “
Alpha-Fe2O3 Nanotubes With Superior Lithium Storage Capability
,”
Chem. Commun.
,
47
, pp.
8061
8063
.10.1039/c1cc12111a
36.
Mohapatra
,
S. K.
,
John
,
S. E.
,
Banerjee
,
S.
, and
Misra
,
M.
,
2009
, “
Water Photooxidation by Smooth and Ultrathin Alpha-Fe2O3 Nanotube Arrays
,”
Chem. Mater.
,
21
(
14
), pp.
3048
3055
.10.1021/cm8030208
37.
Xie
,
K.
,
Li
,
J.
,
Lai
,
Y.
,
Lu
,
W.
,
Zhang
,
Z.
,
Liu
,
Y.
,
Zhou
,
L.
, and
Huang
,
H.
,
2011
,“
Highly Ordered Iron Oxide Nanotube Arrays as Electrodes for Electrochemical Energy Storage
,”
Electrochem. Commun.
,
13
(
6
), pp.
657
660
.10.1016/j.elecom.2011.03.040
38.
Chen
,
L. F.
,
Xie
,
J.
,
Yancey
,
J.
,
Srivatsan
,
M.
, and
Varadana
,
V. K.
,
2010
, “
Biocompatibility and Delivery of NGF by Hematite Nanotubes for Differentiation of PC12 Cells
,”
J. Nanotechnol. Eng. Med.
,
1
(
4
), pp.
1
5
.
You do not currently have access to this content.