Abstract

Digital microfluidics can be used to reliably automate repeated ligation steps to create accurate DNA products. This investigation demonstrates assembly of single-stranded and double-stranded DNA products on digital microfluidics devices. It also presents simple, low-cost methods to integrate on-chip incubation on a commonly used digital microfluidic platform. This work presents the ligation of single-stranded and double-stranded DNA products in droplets surrounded in oil and air with on-chip and off-chip incubations. Successful assembly of DNA products was determined by verifying that the size of on-chip DNA products was equal to benchtop controls. This suggests that digital microfluidic devices are a suitable platform for automated assembly of DNA products in a variety of biomedical applications.

References

1.
Khalil
,
A. S.
, and
Collins
,
J. J.
,
2010
, “
Synthetic Biology: Applications Come of Age
,”
Nat. Rev. Genet.
,
11
(
5
), pp.
367
379
.10.1038/nrg2775
2.
Shih
,
S. C. C.
,
Goyal
,
G.
,
Kim
,
P. W.
,
Koutsoubelis
,
N.
,
Keasling
,
J. D.
,
Adams
,
P. D.
,
Hillson
,
N. J.
, and
Singh
,
A. K.
,
2015
, “
A Versatile Microfluidic Device for Automating Synthetic Biology
,”
ACS Synth. Biol.
,
4
(
10
), pp.
1151
1164
.10.1021/acssynbio.5b00062
3.
Jensen
,
M. A.
, and
Davis
,
R. W.
,
2018
, “
Template-Independent Enzymatic Oligonucleotide Synthesis (TiEOS): Its History, Prospects, and Challenges
,”
Biochemistry
,
57
(
12
), pp.
1821
1832
.10.1021/acs.biochem.7b00937
4.
Shen
,
R.
,
Lv
,
A.
,
Yi
,
S.
,
Wang
,
P.
,
Mak
,
P. I.
,
Martins
,
R. P.
, and
Jia
,
Y.
,
2023
, “
Nucleic Acid Analysis on Electrowetting-Based Digital Microfluidics
,”
TrAC—Trends Anal. Chem.
,
158
, p.
116826
.10.1016/j.trac.2022.116826
5.
Lee
,
H. H.
,
Kalhor
,
R.
,
Goela
,
N.
,
Bolot
,
J.
, and
Church
,
G. M.
,
2019
, “
Terminator-Free Template-Independent Enzymatic DNA Synthesis for Digital Information Storage
,”
Nat. Commun.
,
10
(
1
), p.
2383
.10.1038/s41467-019-10258-1
6.
Chang
,
W.-Y.
,
Chang
,
H.-Y.
,
Yao
,
D.-J.
,
Liu
,
Y.-J.
, and
Lin
,
H.-C.
,
2008
, “
DNA Ligation of Ultramicro Volume Using an EWOD Microfluidic System With Coplanar Electrodes
,”
J. Micromech. Microeng.
,
18
(
4
), p.
045017
.10.1088/0960-1317/18/4/045017
7.
Kok
,
S. D.
,
Stanton
,
L. H.
,
Slaby
,
T.
,
Durot
,
M.
,
Holmes
,
V. F.
,
Patel
,
K. G.
,
Platt
,
D.
, et al.,
2014
, “
Rapid and Reliable DNA Assembly Via Ligase Cycling Reaction
,”
ACS Synth. Biol.
,
3
(
2
), pp.
97
106
.10.1021/sb4001992
8.
Palluk
,
S.
,
Arlow
,
D. H.
,
De Rond
,
T.
,
Barthel
,
S.
,
Kang
,
J. S.
,
Bector
,
R.
,
Baghdassarian
,
H. M.
, et al.,
2018
, “
De Novo DNA Synthesis Using Polymerasenucleotide Conjugates
,”
Nat. Biotechnol.
,
36
(
7
), pp.
645
650
.10.1038/nbt.4173
9.
Liu
,
Y.
,
Sun
,
L.
,
Zhang
,
H.
,
Shang
,
L.
, and
Zhao
,
Y.
,
2021
, “
Microfluidics for Drug Development: From Synthesis to Evaluation
,”
Chem. Rev.
,
121
(
13
), pp.
7468
7529
.10.1021/acs.chemrev.0c01289
10.
Nishat
,
S.
,
Jafry
,
A. T.
,
Martinez
,
A. W.
, and
Awan
,
F. R.
,
2021
, “
Paper-Based Microfluidics: Simplified Fabrication and Assay Methods
,”
Sens. Actuators B
,
336
, p.
129681
.10.1016/j.snb.2021.129681
11.
Paratore
,
F.
,
Bacheva
,
V.
,
Bercovici
,
M.
, and
Kaigala
,
G. V.
,
2021
, “
Reconfigurable Microfluidics
,”
Nat. Rev. Chem.
,
6
(
1
), pp.
70
80
.10.1038/s41570-021-00343-9
12.
Luke
,
C. S.
,
Selimkhanov
,
J.
,
Baumgart
,
L.
,
Cohen
,
S. E.
,
Golden
,
S. S.
,
Cookson
,
N. A.
, and
Hasty
,
J.
,
2016
, “
A Microfluidic Platform for Long-Term Monitoring of Algae in a Dynamic Environment
,”
ACS Synth. Biol.
,
5
(
1
), pp.
8
14
.10.1021/acssynbio.5b00094
13.
Convery
,
N.
, and
Gadegaard
,
N.
,
2019
, “
30 Years of Microfluidics
,”
Micro Nano Eng.
,
2
, pp.
76
91
.10.1016/j.mne.2019.01.003
14.
Fair
,
R. B.
,
2007
, “
Digital Microfluidics: Is a True Lab-on-a-Chip Possible?
,”
Microfluid. Nanofluid.
,
3
, pp.
245
281
.10.1007/s10404-007-0161-8
15.
Nelson
,
W. C.
, and
Kim
,
C. J. C.
,
2012
, “
Droplet Actuation by Electrowetting-on-Dielectric (EWOD): A Review
,”
J. Adhes. Sci. Technol.
,
26
(
12–17
), pp.
1747
1771
.10.1163/156856111X599562
16.
Xu
,
X.
,
Cai
,
L.
,
Liang
,
S.
,
Zhang
,
Q.
,
Lin
,
S.
,
Li
,
M.
,
Yang
,
Q.
,
Li
,
C.
,
Han
,
Z.
, and
Yang
,
C.
,
2023
, “
Digital Microfluidics for Biological Analysis and Applications
,”
Lab Chip
,
23
(
5
), pp.
1169
1191
.10.1039/D2LC00756H
17.
Choi
,
K.
,
Ng
,
A. H. C.
,
Fobel
,
R.
, and
Wheeler
,
A. R.
,
2012
, “
Digital Microfluidics
,”
Annu. Rev. Anal. Chem.
,
5
(
1
), pp.
413
440
.10.1146/annurev-anchem-062011-143028
18.
Narahari
,
T.
,
Dahmer
,
J.
,
Sklavounos
,
A.
,
Kim
,
T.
,
Satkauskas
,
M.
,
Clotea
,
I.
,
Ho
,
M.
, et al.,
2022
, “
Portable Sample Processing for Molecular Assays: Application to Zika Virus Diagnostics
,”
Lab Chip
,
22
(
9
), pp.
1748
1763
.10.1039/D1LC01068A
19.
Sista
,
R. S.
,
Eckhardt
,
A. E.
,
Srinivasan
,
V.
,
Pollack
,
M. G.
,
Palanki
,
S.
, and
Pamula
,
V. K.
,
2008
, “
Heterogeneous Immunoassays Using Magnetic Beads on a Digital Microfluidic Platform
,”
Lab Chip
,
8
(
12
), p.
2188
.10.1039/b807855f
20.
Sista
,
R. S.
,
Eckhardt
,
A. E.
,
Wang
,
T.
,
Graham
,
C.
,
Rouse
,
J. L.
,
Norton
,
S. M.
,
Srinivasan
,
V.
, et al.,
2011
, “
Digital Microfluidic Platform for Multiplexing Enzyme Assays: Implications for Lysosomal Storage Disease Screening in Newborns
,”
Clin. Chem.
,
57
(
10
), pp.
1444
1451
.10.1373/clinchem.2011.163139
21.
Liu
,
X.
,
Ma
,
D.
,
Ye
,
H.
,
Hou
,
Y.
,
Bai
,
X.
,
Xing
,
Y.
,
Cheng
,
X.
,
Lin
,
B.
, and
Lu
,
Y.
,
2023
, “
Electrowetting-Based Digital Microfluidics: Toward a Full-Functional Miniaturized Platform for Biochemical and Biological Applications
,”
TrAC - Trends Anal. Chem.
,
166
, p.
117153
.10.1016/j.trac.2023.117153
22.
Zhai
,
J.
,
Liu
,
Y.
,
Ji
,
W.
,
Huang
,
X.
,
Wang
,
P.
,
Li
,
Y.
,
Li
,
H.
, et al.,
2024
, “
Drug Screening on Digital Microfluidics for Cancer Precision Medicine
,”
Nat. Commun.
,
15
(
1
), p.
4363
.10.1038/s41467-024-48616-3
23.
Coelho
,
B.
,
Veigas
,
B.
,
Fortunato
,
E.
,
Martins
,
R.
,
Águas
,
H.
,
Igreja
,
R.
, and
Baptista
,
P. V.
,
2017
, “
Digital Microfluidics for Nucleic Acid Amplification
,”
Sensors (Switzerland)
,
17
(
7
), p.
1495
.10.3390/s17071495
24.
Li
,
J.
, and
Kim
,
C. J.
,
2020
, “
Current Commercialization Status of Electrowetting-on-Dielectric (EWOD) Digital Microfluidics
,”
Lab Chip
,
20
(
10
), pp.
1705
1712
.10.1039/D0LC00144A
25.
Barbulovic-Nad
,
I.
,
Yang
,
H.
,
Park
,
P. S.
, and
Wheeler
,
A. R.
,
2008
, “
Digital Microfluidics for Cell-Based Assays
,”
Lab Chip
,
8
(
4
), pp.
519
526
.10.1039/b717759c
26.
Peng
,
J.
,
Chan
,
C.
,
Zhang
,
S.
,
Sklavounos
,
A. A.
,
Olson
,
M. E.
,
Scott
,
E. Y.
,
Hu
,
Y.
, et al.,
2023
, “
All-in-One Digital Microfluidics Pipeline for Proteomic Sample Preparation and Analysis
,”
Chem. Sci.
,
14
(
11
), pp.
2887
2900
.10.1039/D3SC00560G
27.
Hong
,
J.
,
Kim
,
Y. K.
,
Won
,
D. J.
,
Kim
,
J.
, and
Lee
,
S. J.
,
2015
, “
Three-Dimensional Digital Microfluidic Manipulation of Droplets in Oil Medium
,”
Sci. Rep.
,
5
(
1
), p.
10685
.10.1038/srep10685
28.
Wang
,
D.
,
Jin
,
K.
,
Ji
,
J.
,
Hu
,
C.
,
Du
,
M.
,
Belgaid
,
Y.
,
Shi
,
S.
,
Li
,
J.
,
Hu
,
S.
,
Nathan
,
A.
,
Yu
,
J.
, and
Ma
,
H.
,
2024
, “
Active-Matrix Digital Microfluidics Design for Field Programmable High-Throughput Digitalized Liquid Handling
,”
iScience
,
27
(
5
), p.
109324
.10.1016/j.isci.2024.109324
29.
Liu
,
K.
,
He
,
Y.
,
Lu
,
Z.
,
Xu
,
Q.
,
Wang
,
L.
,
Liu
,
Z.
,
Khou
,
J.
,
Ye
,
J.
,
Liu
,
C.
, and
Zhang
,
T.
,
2024
, “
Laser-Induced Graphene-Based Digital Microfluidics (GDMF): A Versatile Platform With Sub-One-Dollar Cost
,”
Lab Chip
,
24
(
12
), pp.
3125
3134
.10.1039/D4LC00258J
30.
Bernetski
,
K. A.
,
Burkhart
,
C. T.
,
Maki
,
K. L.
, and
Schertzer
,
M. J.
,
2018
, “
Characterization of Electrowetting, Contact Angle Hysteresis, and Adhesion on Digital Microfluidic Devices With Inkjet-Printed Electrodes
,”
Microfluid. Nanofluid.
,
22
(
9
), pp.
1
10
.10.1007/s10404-018-2119-4
31.
Dixon
,
C.
,
Ng
,
A. H. C.
,
Fobel
,
R.
,
Miltenburg
,
M. B.
, and
Wheeler
,
A. R.
,
2016
, “
An Inkjet Printed, Roll-Coated Digital Microfluidic Device for Inexpensive, Miniaturized Diagnostic Assays
,”
Lab Chip
,
16
(
23
), pp.
4560
4568
.10.1039/C6LC01064D
32.
Liu
,
X.
,
Cai
,
J.
,
Wang
,
W.
, and
Chai
,
Y.
,
2024
, “
Multiplex Digital Microfluidics Using Serial Controls and Its Applications in Glucose Sensing
,”
SLAS Technol
,
29
(
2
), p.
100105
.10.1016/j.slast.2023.08.005
33.
Yang
,
C.
,
Gan
,
X.
,
Zeng
,
Y.
,
Xu
,
Z.
,
Xu
,
L.
,
Hu
,
C.
,
Ma
,
H.
,
Chai
,
B.
,
Hu
,
S.
, and
Chai
,
Y.
,
2023
, “
Advanced Design and Applications of Digital Microfluidics in Biomedical Fields: An Update of Recent Progress
,”
Biosens. Bioelectron.
,
242
(
October
), p.
115723
.10.1016/j.bios.2023.115723
34.
Antkowiak
,
P. L.
,
Koch
,
J.
,
Nguyen
,
B. H.
,
Stark
,
W. J.
,
Strauss
,
K.
,
Ceze
,
L.
, and
Grass
,
R. N.
,
2022
, “
Integrating DNA Encapsulates and Digital Microfluidics for Automated Data Storage in DNA
,”
Small
,
18
(
15
), pp.
1
9
.10.1002/smll.202107381
35.
Hua
,
Z.
,
Rouse
,
J. L.
,
Eckhardt
,
A. E.
,
Srinivasan
,
V.
,
Pamula
,
V. K.
,
Schell
,
W. A.
,
Benton
,
J. L.
,
Mitchell
,
T. G.
, and
Pollack
,
M. G.
,
2010
, “
Multiplexed Real-Time Polymerase Chain Reaction on a Digital Microfluidic Platform
,”
Anal. Chem.
,
82
(
6
), pp.
2310
2316
.10.1021/ac902510u
36.
Luk
,
V. N.
,
Mo
,
G. C.
, and
Wheeler
,
A. R.
,
2008
, “
Pluronic Additives: A Solution to Sticky Problems in Digital Microfluidics
,”
Langmuir
,
24
(
12
), pp.
6382
6389
.10.1021/la7039509
37.
Eswar
,
R.
,
Brodie
,
C. H.
,
Reguigui
,
H.
, and
Collier
,
C. M.
,
2023
, “
An Integrated and Automated Digital Microfluidic Device for Dairy Milk Droplet Actuation
,”
Microsyst. Technol.
,
29
(
9
), pp.
1389
1398
.10.1007/s00542-023-05522-w
38.
Kothamachu
,
V. B.
,
Zaini
,
S.
, and
Muffatto
,
F.
,
2020
, “
Role of Digital Microfluidics in Enabling Access to Laboratory Automation and Making Biology Programmable
,”
SLAS Technol.
,
25
(
5
), pp.
411
426
.10.1177/2472630320931794
39.
Brassard
,
D.
,
Malic
,
L.
,
Normandin
,
F.
,
Tabrizian
,
M.
, and
Veres
,
T.
,
2008
, “
Water-Oil Core-Shell Droplets for Electrowetting-Based Digital Microfluidic Devices
,”
Lab Chip
,
8
(
8
), pp.
1342
1349
.10.1039/b803827a
40.
Ren
,
H.
,
Fair
,
R. B.
,
Pollack
,
M. G.
, and
Shaughnessy
,
E. J.
,
2002
, “
Dynamics of Electro-Wetting Droplet Transport
,”
Sens. Actuators, B
,
87
(
1
), pp.
201
206
.10.1016/S0925-4005(02)00223-X
41.
Li
,
Z.
,
Ho
,
T. Y.
, and
Chakrabarty
,
K.
,
2014
, “
Optimization of Heaters in a Digital Microfluidic Biochip for the Polymerase Chain Reaction
,”
20th International Workshop on Thermal Investigations of ICs and Systems
, Greenwich, UK, Sept. 24–26, pp.
1
5
.10.1109/THERMNIC.2014.6972500
42.
Shen
,
H. H.
,
Su
,
T. Y.
,
Liu
,
Y. J.
,
Chang
,
H. Y.
, and
Yao
,
D. J.
,
2013
, “
Single-Nucleotide Polymorphism Detection Based on a Temperature- Controllable Electrowetting on Dielectrics Digital Microfluidic System
,”
Sens. Mater.
,
25
(
9
), pp.
643
696
.https://sensors.myu-group.co.jp/sm_pdf/SM958.pdf
43.
Fobel
,
R.
,
Fobel
,
C.
,
Wheeler
,
A. R.
,
Fobel
,
R.
,
Fobel
,
C.
, and
Wheeler
,
A. R.
,
2013
, “
DropBot: An Open-Source Digital Microfluidic Control Syst. Precise Control Electrostatic Driving Force Instantaneous Drop Velocity Measurement
,”
Appl. Phys. Lett.
,
102
, p.
193513
.10.1063/1.4807118
44.
Alias
,
A. B.
,
Huang
,
H. Y.
,
Wang
,
Y. W.
,
Lin
,
K. T.
,
Lu
,
P. J.
,
Wu
,
T. H.
,
Jiang
,
P. S.
,
Chen
,
C. A.
, and
Yao
,
D. J.
,
2022
, “
DNA Sequencing From Subcritical Concentration of Cell-Free DNA Extracted From Electrowetting-on-Dielectric Platform
,”
Micromachines (Basel
),
13
(
4
), pp.
507
509
.10.3390/mi13040507
45.
Liu
,
C.
,
Choi
,
K.
,
Kang
,
Y.
,
Kim
,
J.
,
Fobel
,
C.
,
Seale
,
B.
,
Campbell
,
J. L.
,
Covey
,
T. R.
, and
Wheeler
,
A. R.
,
2015
, “
Direct Interface Between Digital Microfluidics and High Performance Liquid Chromatography-Mass Spectrometry
,”
Anal. Chem.
,
87
(
24
), pp.
11967
11972
.10.1021/acs.analchem.5b03616
46.
Dryden
,
M. D. M.
, and
Wheeler
,
A. R.
,
2015
, “
DStat: A Versatile, Open-Source Potentiostat for Electroanalysis and Integration
,”
PLoS One
,
10
(
10
), p.
e0140349
.10.1371/journal.pone.0140349
47.
Nikapitiya
,
N. Y. J. B.
,
You
,
S. M.
, and
Moon
,
H.
,
2014
, “
Droplet Dispensing and Splitting by Electrowetting on Dielectric Digital Microfluidics
,” IEEE International Conference on Micro Electro Mechanical Systems (
MEMS
), San Francisco, CA, Jan. 26–30, pp.
955
958
.10.1109/MEMSYS.2014.6765801
You do not currently have access to this content.