Abstract

Nanowire-based microfluidic devices combine the strengths of microfluidics and nanostructures for applications in cell biology and chemical sensing. However, their use has been limited by the complexity of the fabrication methods. In this study, we present a simple approach for fabricating and integrating metallic glass nanowires into microfluidic channels. Metallic glass nanowires were formed by thermoplastic drawing on a silicon substrate. The silicon-anchored nanowire array was sealed with a polydimethylsiloxane (PDMS) channel to create a nanowire-integrated microfluidic device. The effect of nanowire geometry on the flowrate was characterized. The experimental results were compared with computational fluid dynamics (CFD) simulations to understand the fluid–nanowire interaction. The potential of surface modification to functionalize the metallic glass nanowires was evaluated.

References

1.
Convery
,
N.
, and
Gadegaard
,
N.
,
2019
, “
30 Years of Microfluidics
,”
Micro Nano Eng.
,
2
, pp.
76
91
.10.1016/j.mne.2019.01.003
2.
Terry
,
S. C.
,
Jerman
,
J. H.
, and
Angell
,
J. B.
,
1979
, “
A Gas Chromatographic Air Analyzer Fabricated on a Silicon Wafer
,”
IEEE Trans. Electron Devices
,
26
(
12
), pp.
1880
1886
.10.1109/T-ED.1979.19791
3.
Manz
,
A.
,
Graber
,
N.
, and
Widmer
,
H. M.
,
1990
, “
Miniaturized Total Chemical Analysis Systems: A Novel Concept for Chemical Sensing
,”
Sens. Actuators, B
,
1
(
1–6
), pp.
244
248
.10.1016/0925-4005(90)80209-I
4.
Zhan
,
W.
,
Seong
,
G. H.
, and
Crooks
,
R. M.
,
2002
, “
Fabrication of Microchambers Defined by Photopolymerized Hydrogels and Weirs Within Microfluidic Systems: Application to DNA Hybridization
,”
Anal. Chem.
,
74
(
18
), pp.
4647
4652
.10.1021/ac020340y
5.
Cygan
,
Z. T.
,
Cabral
,
J. T.
,
Beers
,
K. L.
, and
Amis
,
E. J.
,
2005
, “
Microfluidic Platform for the Generation of Organic-Phase Microreactors
,”
Langmuir
,
21
(
8
), pp.
3629
3634
.10.1021/la0471137
6.
Huh
,
D.
,
Matthews
,
B. D.
,
Mammoto
,
A.
,
Montoya-Zavala
,
M.
,
Hsin
,
H. Y.
, and
Ingber
,
D. E.
,
2010
, “
Reconstituting Organ-Level Lung Functions on a Chip
,”
Science
,
328
(
5986
), pp.
1662
1668
.10.1126/science.1188302
7.
Bhatia
,
S. N.
, and
Ingber
,
D. E.
,
2014
, “
Microfluidic Organs-on-Chips
,”
Nat. Biotechnol.
,
32
(
8
), pp.
760
772
.10.1038/nbt.2989
8.
Schulte
,
T. H.
,
Bardell
,
R. L.
, and
Weigl
,
B. H.
,
2002
, “
Microfluidic Technologies in Clinical Diagnostics
,”
Clin. Chim. Acta
,
321
(
1–2
), pp.
1
10
.10.1016/S0009-8981(02)00093-1
9.
Martinez
,
A. W.
,
Phillips
,
S. T.
,
Whitesides
,
G. M.
, and
Carrilho
,
E.
,
2010
, “
Diagnostics for the Developing World: Microfluidic Paper-Based Analytical Devices
,”
Anal. Chem.
,
82
(
1
), pp.
3
10
.10.1021/ac9013989
10.
Cunningham
,
D. D.
,
2001
, “
Fluidics and Sample Handling in Clinical Chemical Analysis
,”
Anal. Chim. Acta
,
429
(
1
), pp.
1
18
.10.1016/S0003-2670(00)01256-3
11.
Li
,
X. J.
,
Valadez
,
A. V.
,
Zuo
,
P.
, and
Nie
,
Z. H.
,
2012
, “
Microfluidic 3D Cell Culture: Potential Application for Tissue-Based Bioassays
,”
Bioanalysis
,
4
(
12
), pp.
1509
1525
.10.4155/bio.12.133
12.
Folch
,
A.
,
Jo
,
B. H.
,
Hurtado
,
O.
,
Beebe
,
D. J.
, and
Toner
,
M.
,
2000
, “
Microfabricated Elastomeric Stencils for Micropatterning Cell Cultures
,”
J. Biomed. Mater. Res.
,
52
(
2
), pp.
346
353
.10.1002/1097-4636(200011)52:2<346::AID-JBM14>3.0.CO;2-H
13.
Santini
,
J. T.
,
Richards
,
A. C.
,
Scheidt
,
R.
,
Cima
,
M. J.
, and
Langer
,
R.
,
2000
, “
Microchips as Controlled Drug-Delivery Devices
,”
Angew. Chem., Int. Ed.
,
39
(
14
), pp.
2397
2407
.10.1002/1521-3773(20000717)39:14%3C2396::AID-ANIE2396%3E3.0.CO;2-U
14.
Nguyen
,
N. T.
,
Shaegh
,
S. A. M.
,
Kashaninejad
,
N.
, and
Phan
,
D. T.
,
2013
, “
Design, Fabrication and Characterization of Drug Delivery Systems Based on Lab-on-a-Chip Technology
,”
Adv. Drug Delivery Rev.
,
65
(
11–12
), pp.
1403
1419
.10.1016/j.addr.2013.05.008
15.
Xia
,
Y. N.
,
Yang
,
P. D.
,
Sun
,
Y. G.
,
Wu
,
Y. Y.
,
Mayers
,
B.
,
Gates
,
B.
,
Yin
,
Y. D.
,
Kim
,
F.
, and
Yan
,
Y. Q.
,
2003
, “
One-Dimensional Nanostructures: Synthesis, Characterization, and Applications
,”
Adv. Mater.
,
15
(
5
), pp.
353
389
.10.1002/adma.200390087
16.
Cui
,
Y.
,
Wei
,
Q. Q.
,
Park
,
H. K.
, and
Lieber
,
C. M.
,
2001
, “
Nanowire Nanosensors for Highly Sensitive and Selective Detection of Biological and Chemical Species
,”
Science
,
293
(
5533
), pp.
1289
1292
.10.1126/science.1062711
17.
Zheng
,
G. F.
,
Patolsky
,
F.
,
Cui
,
Y.
,
Wang
,
W. U.
, and
Lieber
,
C. M.
,
2005
, “
Multiplexed Electrical Detection of Cancer Markers With Nanowire Sensor Arrays
,”
Nat. Biotechnol.
,
23
(
10
), pp.
1294
1301
.10.1038/nbt1138
18.
Chan
,
C. K.
,
Peng
,
H.
,
Liu
,
G.
,
McIlwrath
,
K.
,
Zhang
,
X. F.
,
Huggins
,
R. A.
, and
Cui
,
Y.
,
2008
, “
High-Performance Lithium Battery Anodes Using Silicon Nanowires
,”
Nat. Nanotechnol.
,
3
(
1
), pp.
31
35
.10.1038/nnano.2007.411
19.
Huang
,
R.
,
Fan
,
X.
,
Shen
,
W.
, and
Zhu
,
J.
,
2009
, “
Carbon-Coated Silicon Nanowire Array Films for High-Performance Lithium-Ion Battery Anodes
,”
Appl. Phys. Lett.
,
95
, p.
133119
.10.1063/1.3238572
20.
Otnes
,
G.
, and
Borgström
,
M. T.
,
2017
, “
Towards High Efficiency Nanowire Solar Cells
,”
Nano Today
,
12
, pp.
31
45
.10.1016/j.nantod.2016.10.007
21.
Huang
,
M. H.
,
Mao
,
S.
,
Feick
,
H.
,
Yan
,
H. Q.
,
Wu
,
Y. Y.
,
Kind
,
H.
,
Weber
,
E.
,
Russo
,
R.
, and
Yang
,
P. D.
,
2001
, “
Room-Temperature Ultraviolet Nanowire Nanolasers
,”
Science
,
292
(
5523
), pp.
1897
1899
.10.1126/science.1060367
22.
Duan
,
X. F.
,
Huang
,
Y.
,
Agarwal
,
R.
, and
Lieber
,
C. M.
,
2003
, “
Single-Nanowire Electrically Driven Lasers
,”
Nature
,
421
(
6920
), pp.
241
245
.10.1038/nature01353
23.
Wang
,
Z. L.
,
2013
, “
Triboelectric Nanogenerators as New Energy Technology for Self-Powered Systems and as Active Mechanical and Chemical Sensors
,”
ACS Nano
,
7
(
11
), pp.
9533
9557
.10.1021/nn404614z
24.
Arya
,
S. K.
,
Saha
,
S.
,
Ramirez-Vick
,
J. E.
,
Gupta
,
V.
,
Bhansali
,
S.
, and
Singh
,
S. P.
,
2012
, “
Recent Advances in ZnO Nanostructures and Thin Films for Biosensor Applications: Review
,”
Anal. Chim. Acta
,
737
, pp.
1
21
.10.1016/j.aca.2012.05.048
25.
Wang
,
S.
,
Wang
,
H.
,
Jiao
,
J.
,
Chen
,
K. J.
,
Owens
,
G. E.
,
Kamei
,
K. I.
,
Sun
,
J.
, et al.,
2009
, “
Three-Dimensional Nanostructured Substrates Toward Efficient Capture of Circulating Tumor Cells
,”
Angew. Chem., Int. Ed.
,
48
(
47
), pp.
8970
8973
.10.1002/anie.200901668
26.
Wang
,
Z.
,
Wu
,
H.-J.
,
Fine
,
D.
,
Schmulen
,
J.
,
Hu
,
Y.
,
Godin
,
B.
,
Zhang
,
J. X. J.
, and
Liu
,
X.
,
2013
, “
Ciliated Micropillars for the Microfluidic-Based Isolation of Nanoscale Lipid Vesicles
,”
Lab Chip
,
13
(
15
), p.
2879
.10.1039/c3lc41343h
27.
Wang
,
S.
,
Liu
,
K.
,
Liu
,
J.
,
Yu
,
Z. T. F.
,
Xu
,
X.
,
Zhao
,
L.
,
Lee
,
T.
, et al.,
2011
, “
Highly Efficient Capture of Circulating Tumor Cells by Using Nanostructured Silicon Substrates With Integrated Chaotic Micromixers
,”
Angew. Chem., Int. Ed.
,
50
(
13
), pp.
3084
3088
.10.1002/anie.201005853
28.
Rahong
,
S.
,
Yasui
,
T.
,
Yanagida
,
T.
,
Nagashima
,
K.
,
Kanai
,
M.
,
Meng
,
G.
,
He
,
Y.
, et al.,
2015
, “
Three-Dimensional Nanowire Structures for Ultra-Fast Separation of DNA, Protein and RNA Molecules
,”
Sci. Rep.
,
5
(
1
), p.
10584
.10.1038/srep10584
29.
Yasui
,
T.
,
Yanagida
,
T.
,
Ito
,
S.
,
Konakade
,
Y.
,
Takeshita
,
D.
,
Naganawa
,
T.
,
Nagashima
,
K.
, et al.,
2017
, “
Unveiling Massive Numbers of Cancer-Related Urinary-MicroRNA Candidates Via Nanowires
,”
Sci. Adv.
,
3
(
12
), p.
e1701133
.10.1126/sciadv.1701133
30.
Sooriyaarachchi
,
D.
,
Maharubin
,
S.
, and
Tan
,
G. Z.
,
2020
, “
ZnO Nanowire-Anchored Microfluidic Device With Herringbone Structure Fabricated by Maskless Photolithography
,”
Biomed. Eng. Comput. Biol.
,
11
, p.
1179597220941431
.10.1177/1179597220941431
31.
Liu
,
L.
,
Chen
,
S.
,
Xue
,
Z.
,
Zhang
,
Z.
,
Qiao
,
X.
,
Nie
,
Z.
,
Han
,
D.
,
Wang
,
J.
, and
Wang
,
T.
,
2018
, “
Bacterial Capture Efficiency in Fluid Bloodstream Improved by Bendable Nanowires
,”
Nat. Commun.
,
9
, p.
444
.10.1038/s41467-018-02879-9
32.
Hasan
,
M.
, and
Kumar
,
G.
,
2017
, “
High-Throughput Drawing and Testing of Metallic Glass Nanostructures
,”
Nanoscale
,
9
(
9
), pp.
3261
3268
.10.1039/C7NR00126F
33.
Hu
,
Z.
,
Meduri
,
C.
,
Blawzdziewicz
,
J.
, and
Kumar
,
G.
,
2019
, “
Nanoshaping of Glass Forming Metallic Liquids by Stretching: Evading Lithography
,”
Nanotechnology
,
30
(
7
), p.
075302
.10.1088/1361-6528/aaf3db
34.
Jagdale
,
S.
,
Jabed
,
A.
,
Theeda
,
S.
,
Meduri
,
C. S.
,
Hu
,
Z. L.
,
Hasan
,
M.
, and
Kumar
,
G.
,
2022
, “
Review of Thermoplastic Drawing With Bulk Metallic Glasses
,”
Metals
,
12
(
3
), p.
518
.10.3390/met12030518
35.
Theeda
,
S.
, and
Kumar
,
G.
,
2022
, “
Selective-Area Fabrication of Bulk Metallic Glass Nanowires on Silicon
,”
Mater. Lett.
,
326
, p.
132966
.10.1016/j.matlet.2022.132966
36.
Theeda
,
S.
, and
Kumar
,
G.
,
2023
, “
Area-Specific Positioning of Metallic Glass Nanowires on Si Substrate
,”
Nanomanuf. Metrol.
,
6
(
1
), p.
25
.10.1007/s41871-023-00205-6
37.
Liu
,
H.
,
Patil
,
P. R.
, and
Narusawa
,
U.
,
2007
, “
On Darcy-Brinkman Equation: Viscous Flow Between Two Parallel Plates Packed With Regular Square Arrays of Cylinders
,”
Entropy
,
9
(
3
), pp.
118
131
.10.3390/e9030118
You do not currently have access to this content.