Abstract

In this study, we addressed the challenge of nonuniform illumination in custom digital light processing (DLP) systems, often caused by imperfections in the digital micromirror device (DMD) or misalignments in the optical assembly. These issues lead to dimensional inconsistencies across the fabrication area. To overcome this, we developed an automated system for generating a “grayscale” mask that compensates for nonuniform illumination. This system serves as a preprinting calibration procedure, enhancing the precision of three-dimensional (3D) printed features. Our approach involves dividing the fabrication area into a mesh grid where in situ light intensities are measured. The system then calculates and acquires grayscale values that correspond to the minimum light intensity, thereby creating a grayscale mask that levels light distribution across the printing area. Additionally, we outline a method to generate grayscale masks for various light-emitting diode (LED) excitation powers (LEPs) based on initial data from three predefined powers. We evaluated the effectiveness of this method by comparing features printed with standard “full white” images to those adjusted with our grayscale-modulated images. The results show significant enhancements in both uniformity and dimensional accuracy, confirming the efficacy of our approach. This study demonstrates the potential of grayscale modulation to resolve illumination issue in DLP manufacturing to ensure higher precision in printed features.

References

1.
Li
,
Y.
,
Mao
,
Q.
,
Yin
,
J.
,
Wang
,
Y.
,
Fu
,
J.
, and
Huang
,
Y.
,
2021
, “
Theoretical Prediction and Experimental Validation of the Digital Light Processing (DLP) Working Curve for Photocurable Materials
,”
Addit. Manuf.
,
37
, p.
101716
.10.1016/j.addma.2020.101716
2.
Han
,
T.
,
Kundu
,
S.
,
Nag
,
A.
, and
Xu
,
Y.
,
2019
, “
3D Printed Sensors for Biomedical Applications: A Review
,”
Sensors
,
19
(
7
), p.
1706
.10.3390/s19071706
3.
Mo
,
X.
,
Ouyang
,
L.
,
Xiong
,
Z.
, and
Zhang
,
T.
,
2022
, “
Advances in Digital Light Processing of Hydrogels
,”
Biomed. Mater.
,
17
(
4
), p.
042002
.10.1088/1748-605X/ac6b04
4.
Zhang
,
J.
,
Hu
,
Q.
,
Wang
,
S.
,
Tao
,
J.
, and
Gou
,
M.
,
2019
, “
Digital Light Processing Based Three-Dimensional Printing for Medical Applications
,”
Int. J. Bioprint.
,
6
(
1
), p.
242
.10.18063/ijb.v6i1.242
5.
Wei
,
T. S.
,
Ahn
,
B. Y.
,
Grotto
,
J.
, and
Lewis
,
J. A.
,
2018
, “
3D Printing of Customized Li-Ion Batteries With Thick Electrodes
,”
Adv. Mater.
,
30
(
16
), p.
1703027
.10.1002/adma.201703027
6.
Mu
,
Q. Y.
,
Wang
,
L.
,
Dunn
,
C. K.
,
Kuang
,
X.
,
Duan
,
F.
,
Zhang
,
Z.
,
Qi
,
H. J.
, and
Wang
,
T. J.
,
2017
, “
Digital Light Processing 3D Printing of Conductive Complex Structures
,”
Addit. Manuf.
,
18
, pp.
74
83
.10.1016/j.addma.2017.08.011
7.
Mao
,
Y. Q.
,
Yu
,
K.
,
Isakov
,
M. S.
,
Wu
,
J. T.
,
Dunn
,
M. L.
, and
Qi
,
H. J.
,
2015
, “
Sequential Self-Folding Structures by 3D Printed Digital Shape Memory Polymers
,”
Sci. Rep.
,
5
(
1
), p.
13616
.10.1038/srep13616
8.
Kuang
,
X.
,
Wu
,
J. T.
,
Chen
,
K. J.
,
Zhao
,
Z.
,
Ding
,
Z.
,
Hu
,
F. J. Y.
,
Fang
,
D. N.
, and
Qi
,
H. J.
,
2019
, “
Grayscale Digital Light Processing 3D Printing for Highly Functionally Graded Materials
,”
Sci. Adv.
,
5
(
5
), p.
eaav5790
.10.1126/sciadv.aav5790
9.
Yang
,
Y.
,
Li
,
X. J.
,
Zheng
,
X.
,
Chen
,
Z. Y.
,
Zhou
,
Q. F.
, and
Chen
,
Y.
,
2018
, “
3D-Printed Biomimetic Super-Hydrophobic Structure for Microdroplet Manipulation and Oil/Water Separation
,”
Adv. Mater.
,
30
(
9
), p.
1704912
.10.1002/adma.201704912
10.
Li
,
X. J.
,
Yang
,
Y.
,
Liu
,
L. Y.
,
Chen
,
Y. Y.
,
Chu
,
M.
,
Sun
,
H. F.
,
Shan
,
W. T.
, and
Chen
,
Y.
,
2020
, “
3D-Printed Cactus-Inspired Spine Structures for Highly Efficient Water Collection
,”
Adv. Mater. Interfaces
,
7
(
3
), p.
1901752
.10.1002/admi.201901752
11.
Peng
,
X. R.
,
Yue
,
L.
,
Liang
,
S. Z.
,
Montgomery
,
S.
,
Lu
,
C. L.
,
Cheng
,
C. M.
,
Beyah
,
R.
,
Zhao
,
R. R.
, and
Qi
,
H. J.
,
2022
, “
Multi-Color 3D Printing Via Single-Vat Grayscale Digital Light Processing
,”
Adv. Funct. Mater.
,
32
(
28
), p.
2112329
.10.1002/adfm.202112329
12.
Montgomery
,
S. M.
,
Hamel
,
C. M.
,
Skovran
,
J.
, and
Qi
,
H. J.
,
2022
, “
A Reaction-Diffusion Model for Grayscale Digital Light Processing 3D Printing
,”
Extreme Mech. Lett.
,
53
, p.
101714
.10.1016/j.eml.2022.101714
13.
Wang
,
Y. C.
,
Xue
,
D.
, and
Mei
,
D. Q.
,
2020
, “
Projection-Based Continuous 3D Printing Process With the Grayscale Display Method
,”
ASME J. Manuf. Sci. Eng.-Trans. ASME
,
142
(
2
), p.
021003
.10.1115/1.4045616
14.
Li
,
Y.
,
Mao
,
Q. J.
,
Li
,
X. K.
,
Yin
,
J.
,
Wang
,
Y. F.
,
Fu
,
J. Z.
, and
Huang
,
Y.
,
2019
, “
High-Fidelity and High-Efficiency Additive Manufacturing Using Tunable Pre-Curing Digital Light Processing
,”
Addit. Manuf.
,
30
, p.
100889
.10.1016/j.addma.2019.100889
15.
Luo
,
Z.
,
Zhang
,
H.
,
Chen
,
R.
,
Li
,
H.
,
Cheng
,
F.
,
Zhang
,
L.
,
Liu
,
J.
,
Kong
,
T.
,
Zhang
,
Y.
, and
Wang
,
H.
,
2023
, “
Digital Light Processing 3D Printing for Microfluidic Chips With Enhanced Resolution Via Dosing-and Zoning-Controlled Vat Photopolymerization
,”
Microsyst. Nanoeng.
,
9
(
1
), p.
103
.10.1038/s41378-023-00542-y
16.
Jiao
,
C.
,
Gu
,
J.
,
Cao
,
Y.
,
Xie
,
D.
,
Liang
,
H.
,
Chen
,
R.
,
Shi
,
T.
, et al.,
2020
, “
Preparation of Al2O3-ZrO2 Scaffolds With Controllable Multi-Level Pores Via Digital Light Processing
,”
J. Eur. Ceram. Soc.
,
40
(
15
), pp.
6087
6094
.10.1016/j.jeurceramsoc.2020.06.024
17.
Adamov
,
I.
,
Stanojević
,
G.
,
Medarević
,
D.
,
Ivković
,
B.
,
Kočović
,
D.
,
Mirković
,
D.
, and
Ibrić
,
S.
,
2022
, “
Formulation and Characterization of Immediate-Release Oral Dosage Forms With Zolpidem Tartrate Fabricated by Digital Light Processing (DLP) 3D Printing Technique
,”
Int. J. Pharm.
,
624
, p.
122046
.10.1016/j.ijpharm.2022.122046
18.
Zhu
,
J.
,
Wu
,
P.
,
Chao
,
Y.
,
Yu
,
J.
,
Zhu
,
W.
,
Liu
,
Z.
, and
Xu
,
C.
,
2022
, “
Recent Advances in 3D Printing for Catalytic Applications
,”
Chem. Eng. J.
,
433
, p.
134341
.10.1016/j.cej.2021.134341
19.
Rui
,
D. W.
,
Lin
,
Z. L.
,
Qi
,
K. C.
, and
Chen
,
W. B.
,
2012
, “
Optical Design in Illumination System of Digital Light Processing Projector Using Laser and Gradient-Index Lens
,”
Opt. Eng.
,
51
(
1
), p.
013004
.10.1117/1.OE.51.1.013004
20.
Jiang
,
H. N.
,
Lin
,
Z. B.
,
Li
,
Y.
,
Yan
,
Y. G.
,
Zhou
,
Z. P.
,
Chen
,
E. G.
,
Yan
,
Q.
, and
Guo
,
T. L.
,
2021
, “
Projection Optical Engine Design Based on Tri-Color LEDs and Digital Light Processing Technology
,”
Appl. Opt.
,
60
(
23
), pp.
6971
6977
.10.1364/AO.432355
21.
Bai
,
X. Q.
,
Jing
,
X. L.
, and
Liao
,
N. F.
,
2021
, “
Design Method for the High Optical Efficiency and Uniformity Illumination System of the Projector
,”
Opt. Express
,
29
(
8
), pp.
12502
12515
.10.1364/OE.421332
22.
Chen
,
J. J.
,
Huang
,
Z. Y.
,
Liu
,
T. S.
,
Tsai
,
M. D.
, and
Huang
,
K. L.
,
2015
, “
Freeform Lens Design for Light-Emitting Diode Uniform Illumination by Using a Method of Source-Target Luminous Intensity Mapping
,”
Appl. Opt.
,
54
(
28
), pp.
E146
E152
.10.1364/AO.54.00E146
23.
Montgomery
,
S. M.
,
Demoly
,
F.
,
Zhou
,
K.
, and
Qi
,
H. J.
,
2023
, “
Pixel-Level Grayscale Manipulation to Improve Accuracy in Digital Light Processing 3D Printing
,”
Adv. Funct. Mater.
,
33
(
17
), p.
2213252
.10.1002/adfm.202213252
24.
Zhou
,
C.
, and
Chen
,
Y.
,
2012
, “
Additive Manufacturing Based on Optimized Mask Video Projection for Improved Accuracy and Resolution
,”
J. Manuf. Processes
,
14
(
2
), pp.
107
118
.10.1016/j.jmapro.2011.10.002
25.
Guven
,
E.
,
Karpat
,
Y.
, and
Cakmakci
,
M.
,
2022
, “
Improving the Dimensional Accuracy of Micro Parts 3D Printed With Projection-Based Continuous Vat Photopolymerization Using a Model-Based Grayscale Optimization Method
,”
Addit. Manuf.
,
57
, p.
102954
.10.1016/j.addma.2022.102954
26.
Gandhi
,
P.
, and
Bhole
,
K.
,
2013
, “
Characterization of “Bulk Lithography” Process for Fabrication of Three-Dimensional Microstructures
,”
ASME J. Micro- Nano-Manuf.
,
1
(
4
), p.
041002
.10.1115/1.4025461
27.
Bhole
,
K.
,
Ekshinge
,
S.
, and
Gandhi
,
P.
,
2014
, “
Fabrication of Continuously Varying Thickness Micro-Cantilever Using Bulk Lithography Process
,”
ASME
Paper No. MSEC2014-4041.10.1115/MSEC2014-4041
28.
Gandhi
,
P.
, and
Bhole
,
K.
,
2011
, “
3D Microfabrication Using Bulk Lithography
,”
ASME
Paper No. IMECE2011-62473.10.1115/IMECE2011-62473
29.
Jariwala
,
A. S.
,
Schwerzel
,
R. E.
,
Nikoue
,
H. A.
, and
Rosen
,
D. W.
,
2012
, “
Exposure Controlled Projection Lithography for Microlens Fabrication
,”
Advanced Fabrication Technologies for Micro/Nano Optics and Photonics V
, San Francisco, CA, Jan. 21–26, pp.
225
237
.10.1117/12.909087
30.
Zhao
,
X.
, and
Rosen
,
D. W.
,
2015
, “
Process Modeling and Advanced Control Methods for Exposure Controlled Projection Lithography
,”
2015 American Control Conference (ACC)
, Chicago, IL, July 1–3, pp.
3643
3648
.10.1109/ACC.2015.7171896
31.
Zhou
,
C.
, and
Chen
,
Y.
,
2009
, “
Calibrating Large-Area Mask Projection Stereolithography for Its Accuracy and Resolution Improvements
,”
2009 International Solid Freeform Fabrication Symposium
, Austin, TX, Aug. 3–5, pp.
82
97
.https://utw10945.utweb.utexas.edu/Manuscripts/2009/2009-09-Zhou.pdf
32.
Zheng
,
X.
,
Deotte
,
J.
,
Alonso
,
M. P.
,
Farquar
,
G. R.
,
Weisgraber
,
T. H.
,
Gemberling
,
S.
,
Lee
,
H.
,
Fang
,
N.
, and
Spadaccini
,
C. M.
,
2012
, “
Design and Optimization of a Light-Emitting Diode Projection Micro-Stereolithography Three-Dimensional Manufacturing System
,”
Rev. Sci. Instrum.
,
83
(
12
), p.
125001
.10.1063/1.4769050
33.
Zhang
,
Y.
,
Dong
,
Z. C.
,
Li
,
C. X.
,
Du
,
H. F.
,
Fang
,
N. X.
,
Wu
,
L.
, and
Song
,
Y. L.
,
2020
, “
Continuous 3D Printing From One Single Droplet
,”
Nat. Commun.
,
11
(
1
), p.
4685
.10.1038/s41467-020-18518-1
34.
Subedi
,
S.
, and
Ware
,
H. O. T.
,
2023
, “
Modeling and Correcting Illumination Inhomogeneity Over Multiple DLP Illumination Intensities for Better Fabrication Accuracy
,”
2023 International Solid Freeform Fabrication Symposium
, Austin, TX, Aug. 14–16, pp.
775
788
.https://repositories.lib.utexas.edu/server/api/core/bitstreams/6e392d72-d9ec-4368-b34f-217a6a98569d/content
35.
Cavallo
,
A.
,
Madaghiele
,
M.
,
Masullo
,
U.
,
Lionetto
,
M. G.
, and
Sannino
,
A.
,
2017
, “
Photo‐Crosslinked Poly (Ethylene Glycol) Diacrylate (PEGDA) Hydrogels From Low Molecular Weight Prepolymer: Swelling and Permeation Studies
,”
J. Appl. Polym. Sci.
,
134
(
2
), p.
44380
.10.1002/app.44380
You do not currently have access to this content.