Abstract

Acoustophoretic assembly uses a standing acoustic field to move dispersed small particles into a geometric pattern. The technique relies on the acoustic radiation force (ARF), which arises from the interaction between the acoustic field and the particles, and drives the particles toward the pressure nodes or antinodes of the standing wave. Acoustophoretic assembly shows potential for a wide range of applications, including organizing filler materials in composites, creating metamaterials, and fabricating functional biological tissue. However, the method has not yet been incorporated into large-scale manufacturing processes. One barrier is the incomplete understanding of the assembly process. While an ideal final pattern geometry can be calculated from the acoustic field and material properties, there are currently no widespread metrics for measuring the progress of the pattern formation. As a result, it is difficult to know how long the acoustic field should be applied during manufacturing. Our approach uses the local particle concentration to model the acoustophoretic assembly process in bulk acoustic waves. We show that the time-dependent local particle concentration can be derived from the force balance on the particles and a control volume analysis. The analysis is applied to microspheres in a planar standing wave, and an analytical expression is obtained, which yields a time parameter for pattern assembly and suggests a cutoff time. We then use the local concentration to define measurements for the quality of the assembled microsphere pattern. Experiments were carried out using polystyrene microspheres in a glycerol–water mixture to validate the theoretical results.

References

1.
Melde
,
K.
,
Choi
,
E.
,
Wu
,
Z.
,
Palagi
,
S.
,
Qiu
,
T.
, and
Fischer
,
P.
,
2018
, “
Acoustic Fabrication Via the Assembly and Fusion of Particles
,”
Adv. Mater.
,
30
(
3
), p.
1704507
.10.1002/adma.201704507
2.
Yunus
,
D. E.
,
Sohrabi
,
S.
,
He
,
R.
,
Shi
,
W.
, and
Liu
,
Y.
,
2017
, “
Acoustic Patterning for 3D Embedded Electrically Conductive Wire in Stereolithography
,”
J. Micromech. Microeng.
,
27
(
4
), p.
045016
.10.1088/1361-6439/aa62b7
3.
Chai
,
L. A.
, and
Anthony
,
B. W.
,
2017
, “
Organization and Compaction of Composite Filler Material Using Acoustic Focusing
,” ASME Paper No. IMECE2017-71952. 10.1115/IMECE2017-71952
4.
Llewellyn-Jones
,
T. M.
,
Drinkwater
,
B. W.
, and
Trask
,
R. S.
,
2016
, “
3D Printed Components With Ultrasonically Arranged Microscale Structure
,”
Smart Mater. Struct.
,
25
(
2
), p.
02 LT01
.10.1088/0964-1726/25/2/02LT01
5.
King
,
L. V.
,
1934
, “
On the Acoustic Radiation Pressure on Spheres
,”
Proc. R. Soc. London, Ser. A
,
147
(
861
), pp.
212
240
.10.1098/rspa. 1934.0215
6.
Yosioka
,
K.
, and
Kawasima
,
Y.
,
1955
, “
Acoustic Radiation Pressure on a Compressible Sphere
,”
Acustica
,
6
(
3
), pp.
167
173
.https://www.ingentaconnect.com/content/dav/aaua/1955/00000005/00000003/art00004?crawler=true
7.
Gor'kov
,
L. P.
,
1962
, “
On the Forces Acting on a Small Particle in an Acoustic Field in an Ideal Flow
,”
Sov. Phys. Dokl.
,
6
, pp.
773
775
.https://api.semanticscholar.org/CorpusID:117755200
8.
Doinikov
,
A. A.
,
2003
, “
Acoustic Radiation Forces: Classical Theory and Recent Advances
,”
Recent Res. Dev. Acoust.
,
1
, pp.
39
67
.https://www.researchgate.net/publication/235345891_Acoustic_radiation_forces_Classical_theory_and_recent_advances
9.
Greenhall
,
J.
,
Vasquez
,
F. G.
, and
Raeymaekers
,
B.
,
2016
, “
Ultrasound Directed Self-Assembly of User-Specified Patterns of Nanoparticles Dispersed in a Fluid Medium
,”
Appl. Phys. Lett.
,
108
(
10
), p.
103103
.10.1063/1.4943634
10.
Wang
,
Y. J.
,
Chai
,
L. A.
,
Zubajlo
,
R. E.
, and
Anthony
,
B. W.
,
2022
, “
Sequencing Waves in Single-Transducer Acoustophoretic Patterning of Microspheres
,”
Appl. Phys. Lett.
,
121
(
24
), p.
244106
.10.1063/5.0112113
11.
Muller
,
P. B.
,
Barnkob
,
R.
,
Jensen
,
M. J. H.
, and
Bruus
,
H.
,
2012
, “
A Numerical Study of Microparticle Acoustophoresis Driven by Acoustic Radiation Forces and Streaming-Induced Drag Forces
,”
Lab Chip
,
12
(
22
), p.
4617
.10.1039/c2lc40612h
12.
Wang
,
Y. J.
,
2022
, “
Formation Process of Acoustophoretic Patterns
,”
Ph.D. thesis
,
Massachusetts Institute of Technology
.https://www.researchgate.net/publication/361328066_Formation_Process_of_Acoustophoretic_Patterns
13.
Barnkob
,
R.
,
Augustsson
,
P.
,
Laurell
,
T.
, and
Bruus
,
H.
,
2010
, “
Measuring the Local Pressure Amplitude in Microchannel Acoustophoresis
,”
Lab Chip
,
10
(
5
), p.
563
.10.1039/b920376a
14.
Garcia-Sabaté
,
A.
,
Castro
,
A.
,
Hoyos
,
M.
, and
González-Cinca
,
R.
,
2014
, “
Experimental Study on Inter-Particle Acoustic Forces
,”
J. Acoust. Soc. Am.
,
135
(
3
), pp.
1056
1063
.10.1121/1.4864483
15.
Bruus
,
H.
,
2012
, “
Acoustofluidics 10: Scaling Laws in Acoustophoresis
,”
Lab Chip
,
12
(
9
), pp.
1578
1586
.10.1039/c2lc21261g
16.
Wiklund
,
M.
,
Green
,
R.
, and
Ohlin
,
M.
,
2012
, “
Acoustofluidics 14: Applications of Acoustic Streaming in Microfluidic Devices
,”
Lab Chip
,
12
(
14
), pp.
2438
2451
.10.1039/c2lc40203c
17.
Blair
,
D.
, and
Dufresne
,
E.
,
2019
, “
The Matlab Particle Tracking Code Repository
,” accessed Oct. 2019, http://site.physics.georgetown.edu/matlab/index.html
18.
Crocker
,
J. C.
, and
Grier
,
D. G.
,
1996
, “
Methods of Digital Video Microscopy for Colloidal Studies
,”
J. Colloid Interface Sci.
,
179
(
1
), pp.
298
310
.10.1006/jcis.1996.0217
You do not currently have access to this content.