Abstract

Hydrodynamic cavitation (HC) shows promise for surface modification and strengthening. While previous research has explored its potential for surface hardening and polishing, the application of cavitation for surface texturing remains relatively unexplored. This paper aims to investigate the feasibility of using hydrodynamic cavitation for surface texturing and hardening, as well as identify the key process parameters that influence the outcomes. Computational fluid dynamics (CFD) simulations are utilized to analyze the behavior of cavitation under various conditions, and experimental validation is conducted. The study examines the influence of different chamber insert geometries on cavitation intensity and energy release. It also investigates the effect of process parameters on surface morphology and hardness. The results demonstrate that hydrodynamic cavitation can effectively strengthen specific regions of interest when the cavitation intensity is controlled. However, the formation of surface texture through plastic deformation may be limited to ductile materials or those with low yield strength. The study highlights the significance of utilizing suitable cavitation generators capable of continuously generating cavitation for consistent and controlled intensity. Preliminary results suggest that innovative vortex-based devices have the potential to deliver controlled cavitation intensity to desired areas.

References

1.
Pang
,
H.
, and
Ngaile
,
G.
,
2022
, “
Utilization of Secondary Jet in Cavitation Peening and Cavitation Abrasive Jet Polishing
,”
Micromachines
,
13
(
1
), p.
86
.10.3390/mi13010086
2.
Soyama
,
H.
,
2019
, “
Comparison Between the Improvements Made to the Fatigue Strength of Stainless Steel by Cavitation Peening, Water Jet Peening, Shot Peening and Laser Peening
,”
J. Mater. Process. Technol.
,
269
, pp.
65
78
.10.1016/j.jmatprotec.2019.01.030
3.
Soyama
,
H.
,
Park
,
J. D.
, and
Saka
,
M.
,
2000
, “
Use of Cavitating Jet for Introducing Compressive Residual Stress
,”
ASME J. Manuf. Sci. Eng.
,
122
(
1
), pp.
83
89
.10.1115/1.538911
4.
Świetlicki
,
A.
,
Szala
,
M.
, and
Walczak
,
M.
,
2022
, “
Effects of Shot Peening and Cavitation Peening on Properties of Surface Layer of Metallic Materials—A Short Review
,”
Materials
,
15
(
7
), p.
2476
.10.3390/ma15072476
5.
Takahashi
,
K.
,
Osedo
,
K.
,
Suzuki
,
T.
, and
Fukuda
,
S.
,
2018
, “
Fatigue Strength Improvement of an Aluminum Alloy With a Crack-Like Surface Defect Using Shot Peening and Cavitation Peening
,”
Eng. Fract. Mech.
,
193
, pp.
151
161
.10.1016/j.engfracmech.2018.02.013
6.
Sonde
,
E.
,
Chaise
,
T.
,
Boisson
,
N.
, and
Nelias
,
D.
,
2018
, “
Modeling of Cavitation Peening: Jet, Bubble Growth and Collapse, Micro-Jet and Residual Stresses
,”
J. Mater. Technol.
,
262
, pp.
479
491
.10.1016/j.jmatprotec.2018.07.023
7.
Marcon
,
A.
,
Melkote
,
S. N.
, and
Yoda
,
M.
,
2018
, “
Effect of Nozzle Size Scaling in co-Flow Water Cavitation Jet Peening
,”
J. Manuf. Process.
,
31
, pp.
372
381
.10.1016/j.jmapro.2017.12.002
8.
Nagalingam
,
A. P.
,
Yuvaraj
,
H. K.
, and
Yeo
,
S.
,
2020
, “
Synergistic Effects in Hydrodynamic Cavitation Abrasive Finishing for Internal Surface-Finish Enhancement of Additive-Manufactured Components
,”
Addit. Manuf.
,
33
, p.
101110
.10.1016/j.addma.2020.101110
9.
Davoodi
,
F.
,
Taghian
,
M.
,
Carbone
,
G.
,
Saboori
,
A.
, and
Iuliano
,
L.
,
2023
, “
An Overview of the Latest Progress in Internal Surface Finishing of the Additively Manufactured Metallic Components
,”
Materials
,
16
(
10
), p.
3867
.10.3390/ma16103867
10.
Zhang
,
L.
,
Wang
,
J.-S.
,
Tan
,
D.-P.
, and
Yuan
,
Z.-M.
,
2017
, “
Gas Compensation Based Abrasive Flow Processing Method for Complex Titanium Alloy Surfaces
,”
Int. J. Adv. Manuf. Technol.
,
92
(
9–12
), pp.
3385
3397
.10.1007/s00170-017-0400-4
11.
Chen
,
F. J.
,
Wang
,
H.
,
Tang
,
Y.
,
Yin
,
S. H.
,
Huang
,
S.
, and
Zhang
,
G. H.
,
2018
, “
Novel Cavitation Fluid Jet Polishing Process Based on Negative Pressure Effects
,”
Ultrason. Sonochem.
,
42
, pp.
339
346
.10.1016/j.ultsonch.2017.11.016
12.
Pan
,
Y.
,
Ji
,
S.
,
Tan
,
D.
, and
Cao
,
H.
,
2020
, “
Cavitation-Based Soft Abrasive Flow Processing Method
,”
Int. J. Adv. Manuf. Technol.
,
109
(
9–12
), pp.
2587
2602
.10.1007/s00170-020-05836-3
13.
Tan
,
K.
, and
Yeo
,
S.
,
2017
, “
Surface Modification of Additive Manufactured Components by Ultrasonic Cavitation Abrasive Finishing
,”
Wear
,
378–379
, pp.
90
95
.10.1016/j.wear.2017.02.030
14.
Mao
,
B.
,
Siddaiah
,
A.
,
Liao
,
Y.
, and
Menezes
,
P. L.
,
2020
, “
Laser Surface Texturing and Related Techniques for Enhancing Tribological Performance of Engineering Materials: A Review
,”
J. Manuf. Process.
,
53
, pp.
153
173
.10.1016/j.jmapro.2020.02.009
15.
Li
,
H. N.
,
Zhao
,
Y.
, and
Cao
,
S.
,
2021
, “
Controllable Generation of 3D Textured Abrasive Tools Via Multiple-Pass Laser Ablation
,”
J. Mater. Process. Technol.
,
295
, p.
117149
.10.1016/j.jmatprotec.2021.117149
16.
Zenebe
,
D.
,
Chae
,
Y.
,
Lee
,
S. J.
, and
Kim
,
C.
,
2023
, “
Synergistic Influences of Laser Surface Texturing and ZrO2-MoDTC Hybrid Nanofluids for Enhanced Tribological Performance
,”
Tribol. Int.
,
183
, p.
108377
.10.1016/j.triboint.2023.108377
17.
Kovalchenko
,
A.
,
Ajayi
,
O.
,
Erdemir
,
A.
,
Fenske
,
G.
, and
Etsion
,
I.
,
2005
, “
The Effect of Laser Surface Texturing on Transitions in Lubrication Regimes During Unidirectional Sliding Contact
,”
Tribol. Int.
,
38
(
3
), pp.
219
225
.10.1016/j.triboint.2004.08.004
18.
Etsion
,
I.
,
2004
, “
Improving Tribological Performance of Mechanical Components by Laser Surface Texturing
,”
Tribol. Lett.
,
17
(
4
), pp.
733
737
.10.1007/s11249-004-8081-1
19.
Han
,
B.
,
Ju
,
D.
, and
Jia
,
W. P.
,
2007
, “
Influence of Water Cavitation Peening With Aeration on Fatigue Behavior of SAE1045 Steel
,”
Appl. Surf. Sci.
,
253
(
24
), pp.
9342
9346
.10.1016/j.apsusc.2007.05.076
20.
Soyama
,
H.
,
2020
, “
Cavitation Peening: A Review
,”
Metals
,
10
(
2
), p.
270
.10.3390/met10020270
21.
Gao
,
Y.
,
Wu
,
B.
,
Liu
,
Z.
,
Zhou
,
Y.
,
Shen
,
N.
, and
Ding
,
H.
,
2014
, “
Ultrasonic Cavitation Peening of Stainless Steel and Nickel Alloy
,”
ASME J. Manuf. Sci. Eng.
,
136
(
1
), p.
014502
.10.1115/1.4025756
22.
Nagalingam
,
A.
,
Thiruchelvam
,
V. C.
, and
Yeo
,
S. H.
,
2019
, “
A Novel Hydrodynamic Cavitation Abrasive Technique for Internal Surface Finishing
,”
J. Manuf. Process.
,
46
, pp.
44
58
.10.1016/j.jmapro.2019.08.014
23.
Pang
,
H.
,
2020
, “
Harnessing of Energy Emanating From Hydrodynamic Cavitation for Manufacturing Processes
,” Ph.D. dissertation,
North Carolina State University
.
You do not currently have access to this content.