Abstract

Electrohydrodynamic (EHD) printing is a versatile process that can be used to pattern high-resolution droplets and fibers through the deposition of an electrified jet. This highly complex process utilizes a coupled hydrodynamic and electrostatic mechanism to drive the fluid flow. While it has many biomedical, electronic, and filtration applications, its widescale usage is hampered by a lack of detailed understanding of the jetting physics that enables this process. In this paper, a numerical model is developed and validated to explore the design space of the EHD jetting process, from Taylor cone formation to jet impingement onto the substrate, and analyze the key geometrical and process parameters that yield high-resolution structures. This numerical model applies to various process parameters, material properties, and environmental factors and can accurately capture jet evolution, radius, and flight time. It can be used to better inform design decisions when using EHD processes with distinct resolution requirements.

References

1.
Onses
,
M. S.
,
Sutanto
,
E.
,
Ferreira
,
P. M.
,
Alleyne
,
A. G.
, and
Rogers
,
J. A.
,
2015
, “
Mechanisms, Capabilities, and Applications of High-Resolution Electrohydrodynamic Jet Printing
,”
Small
,
11
(
34
), pp.
4237
4266
.10.1002/smll.201500593
2.
Mkhize
,
N.
, and
Bhaskaran
,
H.
,
2022
, “
Electrohydrodynamic Jet Printing: Introductory Concepts and Considerations
,”
Small Sci.
,
2
(
2
), p.
2100073
.10.1002/smsc.202100073
3.
Phung
,
T. H.
,
Oh
,
S.
, and
Kwon
,
K. S.
,
2018
, “
High-Resolution Patterning Using Two Modes of Electrohydrodynamic Jet: Drop on Demand and Near-Field Electrospinning
,”
J. Visualized Exp.
,
2018
(
137
), p. 57846.10.3791/57846-v
4.
Montanero
,
J. M.
, and
Ganan-Calvo
,
A. M.
,
2019
, “
Dripping, Jetting and Tip Streaming
,”
Rep. Prog. Phys.
, 83(9), p.
097001
.10.1088/1361-6633/aba482
5.
Robinson
,
T. M.
,
Hutmacher
,
D. W.
, and
Dalton
,
P. D.
,
2019
, “
The Next Frontier in Melt Electrospinning: Taming the Jet
,”
Adv. Funct. Mater.
,
29
(
44
), p. 1904664.10.1002/adfm.201904664
6.
Lauricella
,
M.
,
Succi
,
S.
,
Zussman
,
E.
,
Pisignano
,
D.
, and
Yarin
,
A. L.
,
2020
, “
Models of Polymer Solutions in Electrified Jets and Solution Blowing
,”
Rev. Mod. Phys.
,
92
(
3
), p. 035004.10.1103/RevModPhys.92.035004
7.
Saville
,
D. A.
,
1997
, “
Electrohydrodynamics: The Taylor-Melcher Leaky Dielectric Model
,”
Annu. Rev. Fluid Mech.
,
29
(
1
), pp.
27
64
.10.1146/annurev.fluid.29.1.27
8.
Ru
,
C.
,
Chen
,
J.
,
Shao
,
Z.
,
Pang
,
M.
, and
Luo
,
J.
,
2014
, “
A Novel Mathematical Model for Controllable Near-Field Electrospinning
,”
AIP Adv.
,
4
(
1
), p. 017108.10.1063/1.4861705
9.
Chen
,
J.
,
Shao
,
Z.
,
Ru
,
C.
, and
Yang
,
Z.
,
2013
, “
Mathematical Analysis for Controllable Near-Field Electrospinning
,”
2013 International Conference on Manipulation, Manufacturing and Measurement on the Nanoscale
, Suzhou, China,
Aug. 26–30
, pp.
207
210
.10.1109/3M-NANO.2013.6737415
10.
Guan
,
Y.
,
Wang
,
M.
,
Wu
,
S.
,
Tian
,
Y.
,
Ye
,
D.
, and
Huang
,
Y. A.
,
2023
, “
Modeling and Analysis of Electrohydrodynamic Printing Under Various Pulsed Voltage Waveforms
,”
Microfluid. Nanofluid.
,
27
(
2
), pp. 1–10.10.1007/s10404-022-02621-4
11.
Pan
,
Y.
, and
Zeng
,
L.
,
2019
, “
Simulation and Validation of Droplet Generation Process for Revealing Three Design Constraints in Electrohydrodynamic Jet Printing
,”
Micromachines (Basel)
,
10
(
2
), p.
94
.10.3390/mi10020094
12.
Lastow
,
O.
, and
Balachandran
,
W.
,
2006
, “
Numerical Simulation of Electrohydrodynamic (EHD) Atomization
,”
J. Electrostat.
,
64
(
12
), pp.
850
859
.10.1016/j.elstat.2006.02.006
13.
Singh
,
S. K.
, and
Subramanian
,
A.
,
2020
, “
Phase-Field Simulations of Electrohydrodynamic Jetting for Printing Nano-to-Microscopic Constructs
,”
RSC Adv.
,
10
(
42
), pp.
25022
25028
.10.1039/D0RA04214E
14.
Farjam
,
N.
,
Spiegel
,
I. A.
, and
Barton
,
K.
,
2022
, “
High-Fidelity Modeling and Validation of Electrohydrodynamic Jet Printing
,”
Materialia (Oxf)
,
26
, p.
101578
.10.1016/j.mtla.2022.101578
15.
Mohammadi
,
K.
,
Movahhedy
,
M. R.
, and
Khodaygan
,
S.
,
2019
, “
A Multiphysics Model for Analysis of Droplet Formation in Electrohydrodynamic 3D Printing Process
,”
J. Aerosol Sci.
,
135
, pp.
72
85
.10.1016/j.jaerosci.2019.05.001
16.
He
,
L.
,
2017
, “
Control and Predictability of Near-Field Electrospinning
,”
Ph.D. thesis
, University of California, Irvine, CA.https://escholarship.org/content/qt1vm9m7pk/qt1vm9m7pk.pdf?t=orubzy
17.
Hartman
,
R. P. A.
,
Brunner
,
D. J.
,
Camelot
,
D. M. A.
,
Marijnissen
,
J. C. M.
, and
Scarlett
,
B.
,
2000
, “
Jet Break-Up in Electrohydrodynamic Atomization in the Cone-Jet Mode
,”
J. Aerosol Sci.
,
31
(
1
), pp. 65–95.10.1016/S0021-8502(99)00034-8
18.
Martinez-Prieto
,
N.
,
Fratta
,
G.
,
Cao
,
J.
, and
Ehmann
,
K. F.
,
2018
, “
Deposition of Variable Bead Diameter Arrays by Self-Focusing Electrohydrodynamic Jets
,”
ASME J. Micro Nano-Manuf.
,
6
(
3
), p.
031003
.10.1115/1.4040450
19.
Wu
,
C. M.
,
Chiou
,
H. G.
,
Lin
,
S. L.
, and
Lin
,
J. M.
,
2012
, “
Effects of Electrostatic Polarity and the Types of Electrical Charging on Electrospinning Behavior
,”
J. Appl. Polym. Sci.
,
126
(
Suppl. 2
), pp.
E89
E97
.10.1002/app.36680
You do not currently have access to this content.