Abstract

Accurate wafer alignment is the key to achieving wafer bonding accuracy. High-precision wafer alignment systems typically use vision to locate the aligned Mark on two wafers, and use complex mechanisms to perform multiple composite movements to achieve functionality, making the coupling effect of multiple types of errors more complex and challenging the error budget of wafer alignment systems. This paper proposes an error budgeting method for such vision based multibody precision systems. This method takes the homogeneous transformation matrix (HTM) method as the core to model the system error and establish two types of error transfer chains. For the error chain involving visual measurement, an analysis method based on geometrical optics is proposed to consider the influence of the position and orientation errors of the optical path components. Then organize the possible error sources in the system and model the parameters of each error based on actual test results. Combined with the process flow, customize the error model for each link. Finally, perform Monte Carlo simulation. Using the aforementioned method to budget errors for a certain configuration of wafer alignment system, main error sources were identified, and accuracy indicators were proposed based on the alignment accuracy requirements of ± 200 nm. The rationality of the error budget conclusion in this study has been verified through experiments on the construction machine.

References

1.
Panigrahi
,
A. K.
,
Ghosh
,
T.
,
Vanjari
,
S.
, and
Singh
,
S. G.
,
2017
, “
Demonstration of Sub 150 °C Cu-Cu Thermocompression Bonding for 3D ic Applications, Utilizing an Ultra-Thin Layer of Manganin Alloy as an Effective Surface Passivation Layer
,”
Mater. Lett.
,
194
, pp.
86
89
.10.1016/j.matlet.2017.02.041
2.
Panigrahy
,
A. K.
,
Ghosh
,
T.
,
Vanjari
,
S.
, and
Singh
,
S. G.
,
2019
, “
Surface Density Gradient Engineering Precedes Enhanced Diffusion; Drives Cmos in-Line Process Flow Compatible Cu–Cu Thermocompression Bonding at 75 °C
,”
IEEE Trans. Device Mater. Reliab.
,
19
(
4
), pp.
791
795
.10.1109/TDMR.2019.2952927
3.
Donaldson
,
R.
,
1980
, “
Error Budgets, in Technology of Machine Tool, Machine Tool Accuracy
,”
Mach. Tool Task Force
,
5
.
4.
Uriarte
,
L.
,
Herrero
,
A.
,
Zatarain
,
M.
,
Santiso
,
G.
,
Lopéz de Lacalle
,
L. N.
,
Lamikiz
,
A.
, and
Albizuri
,
J.
,
2007
, “
Error Budget and Stiffness Chain Assessment in a Micromilling Machine Equipped With Tools Less Than 0.3 mm in Diameter
,”
Precis. Eng.
,
31
(
1
), pp.
1
12
.10.1016/j.precisioneng.2005.11.010
5.
Mathai
,
G.
,
Kumar
,
M.
,
Melkote
,
S.
,
Hsu
,
F. C.
, and
Wang
,
J. J.
,
2009
, “
Comparison of Relative Contributions of Process and Geometric Errors in Micro and Macro Scale Milling Using an Integrated Error Model
,” ASME Paper No. MSEC2009-84349. 10.1115/MSEC2009-84349
6.
Culpepper
,
M.
, and
Slocum
,
A.
,
1992
,
Precision Machine Design
,
Englewood Cliffs
,
NJ
.
7.
Eijk
,
J. V.
,
Jabben
,
L.
,
Hobbelen
,
D. G. E.
, and
Spronck
,
J. W.
,
2004
, “
Dynamic Error Budgeting, a Tool for Designing High Precision Devices
,”
ASPE Spring Topical Meeting
,
MA
, p.
97
.
8.
Shen
,
Y.-L.
, and
Duffie
,
N. A.
,
1993
, “
Comparison of Combinatorial Rules for Machine Error Budgets
,”
CIRP Ann. - Manuf. Technol.
,
42
(
1
), pp.
619
622
.10.1016/S0007-8506(07)62523-2
9.
Eisenbies
,
S. K.
, and
Hocken
,
R. J.
,
2001
, “
Error Budget by Constraints
,” Master's thesis,
University of North Carolina.
Charlotte, NC
.
10.
Dorndorf
,
U.
,
Kiridena
,
V. S. B.
, and
Ferreira
,
P. M.
,
1994
, “
Optimal Budgeting of Quasistatic Machine Tool Errors
,”
ASME J. Eng. Ind.
,
116
(
1
), pp.
42
53
.10.1115/1.2901808
11.
Hii
,
K. F.
,
Zhao
,
X.
, and
Vallance
,
R. R.
,
2000
, “
Design of a Precision Electro Discharge Micro Milling Machine
,”
Proceedings of the American Society of Precision Engineers Annual Conference
,
Scottsdale
, pp.
22
27
.
12.
Buice
,
E. S.
,
2008
, “
Implementation of a Dynamic Positioning Machine for Nano-Scale Engineering
,” Dissertations & Theses Gradworks.
13.
Brecher
,
C.
,
Utsch
,
P.
,
Klar
,
R.
, and
Wenzel
,
C.
,
2010
, “
Compact Design for High Precision Machine Tools
,”
Int. J. Mach. Tools Manuf.
,
50
(
4
), pp.
328
334
.10.1016/j.ijmachtools.2009.11.007
14.
Erkorkmaz
,
K.
,
Gorniak
,
J. M.
, and
Gordon
,
D. J.
,
2010
, “
Precision Machine Tool X – Y Stage Utilizing a Planar Air Bearing Arrangement
,”
CIRP Ann. - Manuf. Technol.
,
59
(
1
), pp.
425
428
.10.1016/j.cirp.2010.03.086
15.
Liu
,
H.
,
Pan
,
Z.
,
Peng
,
W. C.
, and
Zhu
,
T.
,
2016
, “
Error Budget of Ultra-Precision V-Groove Machine Tools
,”
Mech. Eng. Autom.
,
1
, pp.
145
149
.https://kns.cnki.net/kcms/detail/14.1319.th.20160203.1247.124.html
You do not currently have access to this content.