Abstract

This paper presents catalyst patterning techniques for promoting wafer-scale uniformity while producing taper-free high aspect ratio Si nanostructures using gold (Au) metal-assisted chemical etch (MacEtch). Typical Au nanopatterning involves the use of liftoff processes which have poor yield in manufacturing settings. We report a technique that takes advantage of adhesive forces during MacEtch to mechanically break the metal catalyst over a patterned resist. Three methods for generating increased uniformity are demonstrated—(i), (ii), (iii). Using these methods, taper-free 100 nm nanopillars are presented with wafer-scale uniformity using techniques that can be readily implemented for scalable nanomanufacturing.

References

1.
Madou
,
M. J.
,
2018
,
Fundamentals of Microfabrication and Nanotechnology, Three-Volume Set
,
CRC Press
,
Boca Raton, FL
.
2.
Peng
,
K. Q.
,
Wang
,
X.
, and
Lee
,
S. T.
,
2009
, “
Gas Sensing Properties of Single Crystalline Porous Silicon Nanowires
,”
Appl. Phys. Lett.
,
95
(
24
), p.
243112
.10.1063/1.3275794
3.
Li
,
X.
,
2012
, “
Metal Assisted Chemical Etching for High Aspect Ratio Nanostructures: A Review of Characteristics and Applications in Photovoltaics
,”
Curr. Opin. Solid State Mater. Sci.
,
16
(
2
), pp.
71
81
.10.1016/j.cossms.2011.11.002
4.
Kelzenberg
,
M. D.
,
Boettcher
,
S. W.
,
Petykiewicz
,
J. A.
,
Turner-Evans
,
D. B.
,
Putnam
,
M. C.
,
Warren
,
E. L.
,
Spurgeon
,
J. M.
,
Briggs
,
R. M.
,
Lewis
,
N. S.
, and
Atwater
,
H. A.
,
2010
, “
Enhanced Absorption and Carrier Collection in Si Wire Arrays for Photovoltaic Applications
,”
Nat. Mater.
,
9
(
3
), pp.
239
244
.10.1038/nmat2635
5.
Mallavarapu
,
A.
,
Hrdy
,
M.
,
Castañeda
,
M.
,
Ajay
,
P.
, and
Sreenivasan
,
S. V.
,
2022
, “
Effect of Initial Conditions on Uniformity of Metal Assisted Chemical Etch for Ultra-High Aspect Ratio, Taper-Free Silicon Nanostructures
,”
Proc. SPIE
,
PC12056
, p. PC120560C.10.1117/12.2604283
6.
Honda
,
M.
,
Katsunuma
,
T.
,
Kumakura
,
S.
,
Hisamatsu
,
T.
,
Kihara Masanobu Honda
,
Y.
, and
Kihara
,
Y.
,
2020
, “
Novel Etch Technologies Utilizing Atomic Layer Process for Advanced Patterning
,”
Proc. SPIE
,
11329
(
23
), p.
5
.10.1117/12.2555805
7.
Lian
,
Y.
,
2022
,
Semiconductor Microchips and Fabrication: A Practical Guide to Theory and Manufacturing
, 1st ed.,
Wiley
,
Hoboken, NJ
.
8.
Donnelly
,
V. M.
, and
Kornblit
,
A.
,
2013
, “
Plasma Etching: Yesterday, Today, and Tomorrow
,”
J. Vac. Sci. Technol. A: Vac. Surf. Films
,
31
(
5
), p. 50825.10.1116/1.4819316
9.
Chartier
,
C.
,
Bastide
,
S.
, and
Lévy-Clément
,
C.
,
2008
, “
Metal-Assisted Chemical Etching of Silicon in HF–H2O2
,”
Electrochimica Acta
,
53
(
17
), pp.
5509
5516
.10.1016/j.electacta.2008.03.009
10.
Kong
,
L.
,
Dasgupta
,
B.
,
Ren
,
Y.
,
Mohseni
,
P. K.
,
Hong
,
M.
,
Li
,
X.
,
Chim
,
W. K.
, and
Chiam
,
S. Y.
,
2016
, “
Evidences for Redox Reaction Driven Charge Transfer and Mass Transport in Metal-Assisted Chemical Etching of Silicon
,”
Sci. Rep.
,
6
(
1
), pp.
1
13
.10.1038/srep36582
11.
Li
,
X.
, and
Bonn
,
P. W.
,
2000
, “
Metal-Assisted Chemical Etching in HF/H2O2 Produces Porous Silicon
,”
Appl. Phys. Lett.
,
77
(
16
), pp.
2572
2574
.10.1063/1.1319191
12.
Lehmann
,
V.
,
2002
,
Electrochemistry of Silicon
, Wiley-VCH, Weinheim, Germany.
13.
Huo
,
C. L.
,
Wang
,
J.
,
Fu
,
H. X.
,
Li
,
X. L.
,
Yang
,
Y.
,
Wang
,
H.
,
Mateen
,
A.
,
Farid
,
G.
, and
Peng
,
K. Q.
,
2020
, “
Metal-Assisted Chemical Etching of Silicon in Oxidizing HF Solutions: Origin, Mechanism, Development, and Black Silicon Solar Cell Application
,”
Adv. Funct. Mater.
,
30
(
52
), p.
2005744
.10.1002/adfm.202005744
14.
Yuan
,
G.
,
Aruda
,
K.
,
Zhou
,
S.
,
Levine
,
A.
,
Xie
,
J.
, and
Wang
,
D.
,
2011
, “
Understanding the Origin of the Low Performance of Chemically Grown Silicon Nanowires for Solar Energy Conversion
,”
Angew. Chem. Int. Ed.
,
50
(
10
), pp.
2334
2338
.10.1002/anie.201006617
15.
Peng
,
K.
,
Jie
,
J.
,
Zhang
,
W.
, and
Lee
,
S. T.
,
2008
, “
Silicon Nanowires for Rechargeable Lithium-Ion Battery Anodes
,”
Appl. Phys. Lett.
,
93
(
3
), p.
33105
.10.1063/1.2929373
16.
Sivakov
,
V. A.
,
Voigt
,
F.
,
Berger
,
A.
,
Bauer
,
G.
, and
Christiansen
,
S. H.
,
2010
, “
Roughness of Silicon Nanowire Sidewalls and Room Temperature Photoluminescence
,”
Phys. Rev. B - Condens. Matter Mater. Phys.
,
82
(
12
), p.
125446
.10.1103/PhysRevB.82.125446
17.
Huang
,
Z.
,
Geyer
,
N.
,
Werner
,
P.
,
de Boor
,
J.
,
Gösele
,
U.
,
Huang
,
Z.
,
Geyer
,
N.
,
Werner
,
P.
,
de Boor
,
J.
, and
Gösele
,
U.
,
2011
, “
Metal-Assisted Chemical Etching of Silicon: A Review
,”
Adv. Mater.
,
23
(
2
), pp.
285
308
.10.1002/adma.201001784
18.
Green
,
T. A.
,
2014
, “
Gold Etching for Microfabrication
,”
Gold Bull.
,
47
(
3
), pp.
205
216
.10.1007/s13404-014-0143-z
19.
Tumashev
,
V. S.
, and
Seleznev
,
V. A.
,
2021
, “
A New Technique of Au Nanopattern Formation for Metal-Assisted Chemical Etching of Silicon
,”
International Conference of Young Specialists on Micro/Nanotechnologies and Electron Devices (EDM)
, Souzga, the Altai Republic,
June 30–July 4
,
pp.
91
94
.
20.
Svavarsson
,
H. G.
,
Hallgrimsson
,
B. H.
,
Niraula
,
M.
,
Lee
,
K. J.
, and
Magnusson
,
R.
,
2016
, “
Large Arrays of Ultra-High Aspect Ratio Periodic Silicon Nanowires Obtained Via Top–Down Route
,”
Appl. Phys. A: Mater. Sci. Process.
,
122
(
2
), pp.
1
6
.10.1007/s00339-015-9589-y
21.
Lema Galindo
,
R. M.
,
Ajay
,
P.
, and
Sreenivasan
,
S. V.
,
2023
, “
Simultaneous Micro- and Nanoscale Silicon Fabrication by Metal-Assisted Chemical Etch
,”
ASME J. Micro Nano-Manuf.
,
10
(
3
), p.
031001
.10.1115/1.4062167
22.
Mallavarapu
,
A.
,
Gawlik
,
B.
,
Grigas
,
M.
,
Castañeda
,
M.
,
Abed
,
O.
,
Watts
,
M. P. C.
, and
Sreenivasan
,
S. V.
,
2021
, “
Scalable Fabrication and Metrology of Silicon Nanowire Arrays Made by Metal Assisted Chemical Etch
,”
IEEE Trans. Nanotechnol.
,
20
, pp.
83
91
.10.1109/TNANO.2020.3047366
23.
Huang
,
Z.
, and
Lin
,
Y.
,
2022
, “
Transfer Printing Technologies for Soft Electronics
,”
Nanoscale
,
14
(
45
), pp.
16749
16760
.10.1039/D2NR04283E
24.
Fourche
,
G.
,
1995
, “
An Overview of the Basic Aspects of Polymer Adhesion. Part II: Application to Surface Treatments
,”
Polym. Eng. Sci.
,
35
(
12
), pp.
968
975
.10.1002/pen.760351203
25.
Wendisch
,
F. J.
,
Abazari
,
M.
,
Mahdavi
,
H.
,
Rey
,
M.
,
Vogel
,
N.
,
Musso
,
M.
,
Diwald
,
O.
, and
Bourret
,
G. R.
,
2020
, “
Morphology-Graded Silicon Nanowire Arrays Via Chemical Etching: Engineering Optical Properties at the Nanoscale and Macroscale
,”
ACS Appl. Mater. Interfaces
,
12
(
11
), pp.
13140
13147
.10.1021/acsami.9b21466
26.
Wendisch
,
F. J.
,
Rey
,
M.
,
Vogel
,
N.
, and
Bourret
,
G. R.
,
2020
, “
Large-Scale Synthesis of Highly Uniform Silicon Nanowire Arrays Using Metal-Assisted Chemical Etching
,”
Chem. Mater.
,
32
(
21
), pp.
9425
9434
.10.1021/acs.chemmater.0c03593
27.
Choi
,
J. Y.
,
Alford
,
T. L.
, and
Honsberg
,
C. B.
,
2015
, “
Fabrication of Periodic Silicon Nanopillars in a Two-Dimensional Hexagonal Array With Enhanced Control on Structural Dimension and Period
,”
Langmuir
,
31
(
13
), pp.
4018
4023
.10.1021/acs.langmuir.5b00128
28.
Chang
,
S.-W.
,
Chuang
,
V. P.
,
Boles
,
S. T.
,
Ross
,
C. A.
, and
Thompson
,
C. V.
,
2009
, “
Densely Packed Arrays of Ultra-High-Aspect-Ratio Silicon Nanowires Fabricated Using Block-Copolymer Lithography and Metal-Assisted Etching
,”
Adv. Funct. Mater.
,
19
(
15
), pp.
2495
2500
.10.1002/adfm.200900181
29.
Huang
,
Z.
,
Zhang
,
X.
,
Reiche
,
M.
,
Liu
,
L.
,
Lee
,
W.
,
Shimizu
,
T.
,
Senz
,
S.
, and
Gösele
,
U.
,
2008
, “
Extended Arrays of Vertically Aligned Sub-10 nm Diameter [100] Si Nanowires by Metal-Assisted Chemical Etching
,”
Nano Lett.
,
8
(
9
), pp.
3046
3051
.10.1021/nl802324y
30.
Lai
,
C. Q.
,
Cheng
,
H.
,
Choi
,
W. K.
, and
Thompson
,
C. V.
,
2013
, “
Mechanics of Catalyst Motion During Metal Assisted Chemical Etching of Silicon
,”
J. Phys. Chem. C
,
117
(
40
), pp.
20802
20809
.10.1021/jp407561k
31.
Li
,
L.
,
Zhang
,
G.
, and
Wong
,
C. P.
,
2015
, “
Formation of Through Silicon Vias for Silicon Interposer in Wafer Level by Metal-Assisted Chemical Etching
,”
IEEE Trans. Compon., Packaging Manuf. Technol.
,
5
(
8
), pp.
1039
1049
.10.1109/TCPMT.2015.2443728
32.
Pan
,
C.
,
Luo
,
Z.
,
Xu
,
C.
,
Luo
,
J.
,
Liang
,
R.
,
Zhu
,
G.
,
Wu
,
W.
,
Guo
,
W.
,
Yan
,
X.
,
Xu
,
J.
,
Lin Wang
,
Z.
, and
Zhu
,
J.
,
2011
, “
Wafer-Scale High-Throughput Ordered Arrays of Si and Coaxial Si/Si(1-x)Ge(x) Wires: Fabrication, Characterization, and Photovoltaic Application
,”
ACS Nano
,
5
(
8
), pp.
6629
6636
.10.1021/nn202075z
33.
Knechtel
,
R.
,
2015
, “
Bonding of CMOS Processed Wafers
,”
Handbook of Silicon Based MEMS Materials and Technologies
, 2nd ed.,
William Andrew Publishing
,
Norwich, NY
, Chap.
33
.
34.
Sreenivasan
,
S. V.
,
2017
, “
Nanoimprint Lithography Steppers for Volume Fabrication of Leading-Edge Semiconductor Integrated Circuits
,”
Microsyst. Nanoeng.
,
3
(
1
), pp.
1
19
.10.1038/micronano.2017.75
35.
Castañeda
,
M.
,
2020
, “
Effect of Thermal Oxide Film on Scalable Fabrication of Silicon Nanowire Arrays Using Metal Assisted Chemical Etching
,” Master's thesis, University of Texas at Austin, Austin, TX.
You do not currently have access to this content.