Abstract

One of the main challenges facing the expansion of Additive Manufacturing (AM) is the minimum feature sizes which these processes are able to achieve. Microscale Selective Laser Sintering (μ-SLS) is a novel Additive Manufacturing process created to meet this limitation by precisely laser sintering nanoparticles to give a better control over feature sizes. With the development of this new process, there is a concurrent need for models, which can predict the material properties of the sintering nanoparticles. To this end, this paper presents a novel simulation created to predict the electrical resistivity of sintered copper nanoparticles. Understanding the electrical resistivity of nanoparticles under sintering is useful for quantifying the rate of sintering and has applications such as predicting how the nanoparticles will fuse together when subjected to laser irradiation. Such a prediction allows for in situ corrections to be made to the sintering process to account for heat spreading beyond the intended laser irradiation targets. For these applications, it is important to ensure that the predictions of electrical resistivity from the simulations are accurate. This validation must be done against experimental data and since such experimental data does not currently exist, this paper also presents electrical resistivity data for the laser sintering of copper nanoparticles. In summary, this paper details the simulation methodology for predicting electrical resistivity of laser-sintered copper nanoparticles as well as validation of these simulations using electrical resistivity data from original sintering experiments. The key findings of this work are that the simulations can be used to predict electrical resistivity measurements for sintering of actual copper nanoparticles when the copper nanoparticles do not include other materials such as polymer coatings.

References

1.
Moore
,
G. E.
,
2006
, “
Cramming More Components Onto Integrated Circuits, Reprinted From Electronics, Volume 38, Number 8, April 19, 1965, pp.114 ff.
,”
IEEE Solid-State Circuits Society Newsletter
, 11(3), pp.
33
35
.10.1109/N-SSC.2006.4785860
2.
Allan
,
A.
,
Edenfeld
,
D.
,
Joyner
,
W. H.
,
Kahng
,
A. B.
,
Rodgers
,
M.
, and
Zorian
,
Y.
,
2002
, “
2001 Technology Roadmap for Semiconductors
,”
Computer
,
35
(
1
), pp.
42
53
.10.1109/2.976918
3.
Koester
,
S. J.
,
Young
,
A. M.
,
Yu
,
R. R.
,
Purushothaman
,
S.
,
Chen
,
K.-N.
,
La Tulipe
,
D. C.
,
Rana
,
N.
,
Shi
,
L.
,
Wordeman
,
M. R.
, and
Sprogis
,
E. J.
,
2008
, “
Wafer-Level 3D Integration Technology
,”
IBM J. Res. Develop.
,
52
(
6
), pp.
583
597
.10.1147/JRD.2008.5388565
4.
Knickerbocker
,
J. U.
,
Andry
,
P. S.
,
Dang
,
B.
,
Horton
,
R. R.
,
Patel
,
C. S.
,
Polastre
,
R. J.
,
Sakuma
,
K.
, et al.,
2008
, “
3D Silicon Integration
,”
58th Electronic Components and Technology Conference
, Lake Buena Vista, FL, May 27–30, pp.
538
543
.10.1109/ECTC.2008.4550025
5.
Vaezi
,
M.
,
Seitz
,
H.
, and
Yang
,
S.
,
2013
, “
A Review on 3D Micro-Additive Manufacturing Technologies
,”
Int. J. Adv. Manuf. Technol.
,
67
(
5–8
), pp.
1721
1754
.10.1007/s00170-012-4605-2
6.
Vyatskikh
,
A.
,
Delalande
,
S.
,
Kudo
,
A.
,
Zhang
,
X.
,
Portela
,
C. M.
, and
Greer
,
J. R.
,
2018
, “
Additive Manufacturing of 3D Nano-Architected Metals
,”
Nat. Commun.
,
9
(
1
), p.
593
.10.1038/s41467-018-03071-9
7.
Hirt
,
L.
,
Reiser
,
A.
,
Spolenak
,
R.
, and
Zambelli
,
T.
,
2017
, “
Additive Manufacturing of Metal Structures at the Micrometer Scale
,”
Adv. Mater.
,
29
(
17
), p.
1604211
.10.1002/adma.201604211
8.
Nelson
,
C.
,
McAlea
,
K.
, and
Gray
,
D.
,
1995
, “
Improvements in SLS Part Accuracy
,”
Annual International Solid Freeform Fabrication Symposium
, The University of Texas in Austin, Aug. 7–9, pp.
159
169
.https://utw10945.utweb.utexas.edu/Manuscripts/1995/1995-20-Nelson.pdf
9.
Roy
,
N. K.
,
Foong
,
C. S.
, and
Cullinan
,
M. A.
,
2018
, “
Effect of Size, Morphology, and Synthesis Method on the Thermal and Sintering Properties of Copper Nanoparticles for Use in Microscale Additive Manufacturing Processes
,”
Addit. Manuf.
,
21
, pp.
17
29
.10.1016/j.addma.2018.02.008
10.
Roy
,
N. K.
,
Behera
,
D.
,
Dibua
,
O. G.
,
Foong
,
C. S.
, and
Cullinan
,
M. A.
,
2019
, “
A Novel Microscale Selective Laser Sintering (μ-SLS) Process for the Fabrication of Microelectronic Parts
,”
Microsyst. Nanoeng.
,
5
(
1
), p.
64
.10.1038/s41378-019-0116-8
11.
Roy
,
N. K.
,
Dibua
,
O. G.
,
Jou
,
W.
,
He
,
F.
,
Jeong
,
J.
,
Wang
,
Y.
, and
Cullinan
,
M. A.
,
2018
, “
A Comprehensive Study of the Sintering of Copper Nanoparticles Using Femtosecond, Nanosecond, and Continuous Wave Lasers
,”
ASME J. Micro Nano-Manuf.
,
6
(
1
), p.
010903
.10.1115/1.4038455
12.
Roy
,
N. K.
,
Foong
,
C. S.
, and
Cullinan
,
M. A.
,
2016
, “
Design of a Micro-Scale Selective Laser Sintering System
,”
Annual International Solid Freeform Fabrication Symposium
, The University of Texas in Austin, Aug. 8–10, pp.
1495
1508
.https://www.researchgate.net/publication/318528295_Design_of_a_Microscale_Selective_Laser_Sintering_System
13.
Dibua
,
O. G.
,
Yuksel
,
A.
,
Roy
,
N. K.
,
Foong
,
C. S.
, and
Cullinan
,
M.
,
2018
, “
Nanoparticle Sintering Model: Simulation and Calibration Against Experimental Data
,”
ASME J. Micro Nano-Manuf.
,
6
(
4
), p.
041004
.10.1115/1.4041668
14.
Garg
,
R.
,
Galvin
,
J.
,
Li
,
T.
, and
Pannala
,
S.
,
2012
, “
Documentation of Open-Source MFIX-DEM Software for Gas-Solids Flows
,” accessed Jan. 5, 2024, https://mfix.netl.doe.gov/doc/mfix-archive/mfix_current_documentation/dem_doc_2012-1.pdf
15.
Dibua
,
O.
,
Foong
,
C. S.
, and
Cullinan
,
M.
,
2021
, “
Advances in Nanoparticle Sintering Simulation: Multiple Layer Sintering and Sintering Subject to a Heat Gradient
,”
ASME
Paper No. MSEC2021-63985.10.1115/MSEC2021-63985
16.
Cahn
,
J. W.
, and
Hilliard
,
J. E.
,
1958
, “
Free Energy of a Nonuniform System. I. Interfacial Free Energy
,”
J. Chem. Phys.
,
28
(
2
), pp.
258
267
.10.1063/1.1744102
17.
Cahn
,
J. W.
,
1961
, “
On Spinodal Decomposition
,”
Acta Metall.
,
9
(
9
), pp.
795
801
.10.1016/0001-6160(61)90182-1
18.
Ginzburgh
,
V. L.
, and
Landau
,
L. D.
,
1950
, “
On the Theory of Superconductivity
,”
Zh. Eksp. Teor. Fiz.
,
20
, pp.
1064
1082
.10.1016/B978-0-08-010586-4.50035-3
19.
Dibua
,
O. G.
,
Foong
,
C. S.
, and
Cullinan
,
M.
,
2022
, “
Calibration Uncertainty in Nanoparticle Sintering Simulations
,”
Manuf. Lett.
,
31
, pp.
69
73
.10.1016/j.mfglet.2021.07.010
20.
Dibua
,
O.
,
Foong
,
C. S.
, and
Cullinan
,
M.
,
2022
, “
Electrical Resistance Metrology in Nanoparticle Sintering Simulations
,”
ASME
Paper No. MSEC2022-85997.10.1115/MSEC2022-85997
21.
Zhang
,
Y.
,
Wu
,
L.
,
Guo
,
X.
,
Jung
,
Y.-G.
, and
Zhang
,
J.
,
2016
, “
Molecular Dynamics Simulation of Electrical Resistivity in Sintering Process of Nanoparticle Silver Inks
,”
Comput. Mater. Sci.
,
125
, pp.
105
109
.10.1016/j.commatsci.2016.08.047
22.
Dibua
,
O.
,
Liao
,
A.
,
Tasnim
,
F.
,
Grose
,
J.
,
Behera
,
D.
,
Foong
,
C. S.
, and
Cullinan
,
M.
,
2022
, “
A Study of the Electrical Resistivity of Sintered Copper Nanoparticles
,”
Proceedings of the 33rd Annual International Solid Freeform Fabrication Symposium
, Hilton Austin Hotel in Austin, July 25–27, pp.
383
396
.https://utw10945.utweb.utexas.edu/sites/default/files/2022/A%20Study%20of%20the%20Electrical%20Resistivity%20of%20Sintered%20.pdf
23.
Miccoli
,
I.
,
Edler
,
F.
,
Pfnür
,
H.
, and
Tegenkamp
,
C.
,
2015
, “
The 100th Anniversary of the Four-Point Probe Technique: The Role of Probe Geometries in Isotropic and Anisotropic Systems
,”
J. Phys.: Condens. Matter
,
27
(
22
), p.
223201
.10.1088/0953-8984/27/22/223201
24.
Topsoe
,
H.
,
1968
, “
Geometric Factors in Four Point Resistivity Measurement
,” accessed Jan. 5, 2024, https://www.iiserkol.ac.in/~ph324/StudyMaterials/GeometricFactors4ProbeResistivity.PDF
25.
Smits
,
F. M.
,
1958
, “
Measurement of Sheet Resistivities With the Four-Point Probe
,”
Bell Syst. Tech. J.
,
37
(
3
), pp.
711
718
.10.1002/j.1538-7305.1958.tb03883.x
26.
Grose
,
J.
,
Dibua
,
O.
,
Behera
,
D.
,
Foong
,
C.
, and
Cullinan
,
M.
,
2021
, “
Simulation and Characterization of Nanoparticle Thermal Conductivity for a Microscale Selective Laser Sintering System
,”
ASME
Paper No. MSEC2021-64048.10.1115/MSEC2021-64048
27.
Grose
,
J.
,
Dibua
,
O. G.
,
Behera
,
D.
,
Foong
,
C. S.
, and
Cullinan
,
M.
,
2022
, “
Simulation and Property Characterization of Nanoparticle Thermal Conductivity for a Microscale Selective Laser Sintering System
,”
ASME. J. Heat Mass Transfer-Trans. ASME
,
145
(
5
), p.
052501
.10.1115/1.4055820
You do not currently have access to this content.