Abstract

Current metal additive manufacturing (AM) systems suffer from limitations on the minimum feature sizes they can produce during part formation. The microscale selective laser sintering (μ-SLS) system addresses this drawback by enabling the production of parts with minimum feature resolutions of the order of a single micrometer. However, the production of microscale parts is challenging due to unwanted heat conduction within the nanoparticle powder bed. As a result, finite element (FE) thermal models have been developed to predict the evolution of temperature within the particle bed during laser sintering. These thermal models are not only computationally expensive but also must be integrated into an iterative model-based control framework to optimize the digital mask used to control the distribution of laser power. These limitations necessitate the development of a machine learning (ML) surrogate model to quickly and accurately predict the temperature evolution within the μ-SLS particle bed using minimal training data. The regression model presented in this work uses an “Element-by-Element” approach, where models are trained on individual finite elements to learn the relationship between thermal conditions experienced by each element at a given time-step and the element's temperature at the next time-step. An existing bed-scale FE thermal model of the μ-SLS system is used to generate element-by-element tabular training data for the ML model. A data-efficient artificial neural network (NN) is then trained to predict the temperature evolution of a 2D powder-bed over a 2 s sintering window with high accuracy.

References

1.
Govett
,
T.
,
Kim
,
K.
,
Lundin
,
M.
, and
Pinero
,
D.
,
2012
, “
Design Rules for Selective Laser Sintering
,”
Mechanical Engineering Design Projects Program
,
The University of Texas
,
Austin, TX
.
2.
Sager
,
B.
, and
Rosen
,
D.
,
2002
, “
Stereolithography Process Resolution
,”
Georgia Institute of Technology
,
Atlanta, GA
.
3.
Roy
,
N. K.
,
Behera
,
D.
,
Dibua
,
O. G.
,
Foong
,
C. S.
, and
Cullinan
,
M. A.
,
2019
, “
A Novel Microscale Selective Laser Sintering (μ-SLS) Process for the Fabrication of Microelectronic Parts
,”
Microsyst. Nanoeng.
,
5
(
1
), p.
64
.10.1038/s41378-019-0116-8
4.
Roy
,
N. K.
,
Foong
,
C. S.
, and
Cullinan
,
M. A.
,
2016
, “
Design of a Micro-Scale Selective Laser Sintering System
,”
Proceedings of the 27th Annual International Solid Freeform Fabrication Symposium
,
Austin, TX
, Aug. 8–10, pp.
1495
1508
.https://utw10945.utweb.utexas.edu/sites/default/files/2016/120-Roy.pdf
5.
Roy
,
N.
,
Yuksel
,
A.
, and
Cullinan
,
M.
,
2016
, “
Design and Modeling of a Microscale Selective Laser Sintering System
,”
ASME
Paper No. MSEC2016-8569.10.1115/MSEC2016-8569
6.
Roy
,
N.
,
Dibua
,
O.
,
Foong
,
C. S.
, and
Cullinan
,
M.
,
2017
, “
Preliminary Results on the Fabrication of Interconnect Structures Using Microscale Selective Laser Sintering
,”
ASME
Paper No. IPACK2017-74173.10.1115/IPACK2017-74173
7.
Nelson
,
C.
,
McAlea
,
K.
, and
Gray
,
D.
,
1995
, “
Improvements in SLS Part Accuracy
,”
Proceedings of the 1995 Annual International Solid Freeform Fabrication Symposium
, Austin, TX, Aug., pp.
159
169
.https://utw10945.utweb.utexas.edu/Manuscripts/1995/1995-20-Nelson.pdf
8.
Grose
,
J.
,
Liao
,
A.
,
Tasnim
,
F.
,
Foong
,
C. S.
, and
Cullinan
,
M. A.
,
2023
, “
Part Scale Simulation of Heat Affected Zones for Parameter Optimization in a Microscale Selective Laser Sintering System
,” Proceedings of the 34th Annual International Solid Freeform Fabrication Symposium, Austin, TX, Aug. 14–16, pp.
847
862
.
9.
Buffington
,
T.
,
Bilyaz
,
S.
, and
Ezekoye
,
O. A.
,
2021
, “
Brain-STORM: A Deep Learning Model for Computationally Fast Transient High-Rise Fire Simulations
,”
Fire Saf. J.
,
125
, p.
103443
.10.1016/j.firesaf.2021.103443
10.
Tapia
,
G.
,
Khairallah
,
S.
,
Matthews
,
M.
,
King
,
W. E.
, and
Elwany
,
A.
,
2018
, “
Gaussian Process-Based Surrogate Modeling Framework for Process Planning in Laser Powder-Bed Fusion Additive Manufacturing of 316 L Stainless Steel
,”
Int. J. Adv. Manuf. Technol.
,
94
(
9–12
), pp.
3591
3603
.10.1007/s00170-017-1045-z
11.
Kudela
,
J.
, and
Matousek
,
R.
,
2022
, “
Recent Advances and Applications of Surrogate Models for Finite Element Method Computations: A Review
,”
Soft Comput.
,
26
(
24
), pp.
13709
13733
.10.1007/s00500-022-07362-8
12.
Phellan
,
R.
,
Hachem
,
B.
,
Clin
,
J.
,
Mac‐Thiong
,
J. M.
, and
Duong
,
L.
,
2021
, “
Real‐Time Biomechanics Using the Finite Element Method and Machine Learning: Review and Perspective
,”
Med. Phys.
,
48
(
1
), pp.
7
18
.10.1002/mp.14602
13.
Liang
,
L.
,
Liu
,
M.
,
Martin
,
C.
, and
Sun
,
W.
,
2018
, “
A Machine Learning Approach as a Surrogate of Finite Element Analysis-Based Inverse Method to Estimate the Zero-Pressure Geometry of Human Thoracic Aorta
,”
Int. J. Numer. Methods Biomed. Eng.
,
34
(
8
), p.
e3103
.10.1002/cnm.3103
14.
Vurtur Badarinath
,
P.
,
Chierichetti
,
M.
, and
Davoudi Kakhki
,
F.
,
2021
, “
A Machine Learning Approach as a Surrogate for a Finite Element Analysis: Status of Research and Application to One Dimensional Systems
,”
Sensors
,
21
(
5
), p.
1654
.10.3390/s21051654
15.
Masood
,
Z.
,
Khan
,
S.
, and
Qian
,
L.
,
2021
, “
Machine Learning-Based Surrogate Model for Accelerating Simulation-Driven Optimisation of Hydropower Kaplan Turbine
,”
Renewable Energy
,
173
(
4
), pp.
827
848
.10.1016/j.renene.2021.04.005
16.
Dupuis
,
R.
,
Jouhaud
,
J. C.
, and
Sagaut
,
P.
,
2018
, “
Surrogate Modeling of Aerodynamic Simulations for Multiple Operating Conditions Using Machine Learning
,”
AIAA J.
,
56
(
9
), pp.
3622
3635.
10.2514/1.J056405
17.
Sikirica
,
A.
,
Grbčić
,
L.
, and
Kranjčević
,
L.
,
2023
, “
Machine Learning Based Surrogate Models for Microchannel Heat Sink Optimization
,”
Appl. Therm. Eng.
,
222
, p.
119917
.10.1016/j.applthermaleng.2022.119917
18.
Greve
,
L.
, and
van de Weg
,
B. P.
,
2022
, “
Surrogate Modeling of Parametrized Finite Element Simulations With Varying Mesh Topology Using Recurrent Neural Networks
,”
Array
,
14
, p.
100137
.10.1016/j.array.2022.100137
19.
Vohra
,
M.
,
Nath
,
P.
,
Mahadevan
,
S.
, and
Tina Lee
,
Y. T.
,
2020
, “
Fast Surrogate Modeling Using Dimensionality Reduction in Model Inputs and Field Output: Application to Additive Manufacturing
,”
Reliab. Eng. Syst. Saf.
,
201
(
2
), p.
106986
.10.1016/j.ress.2020.106986
20.
Wang
,
Z.
,
Jiang
,
C.
,
Liu
,
P.
, and
Yang
,
W.
,
2020
, “
Uncertainty Quantification and Reduction in Metal Additive Manufacturing
,”
Npj Comput. Mater.
,
6
(
1
), p.
175
.10.1038/s41524-020-00444-x
21.
Zhao
,
X.
,
Gong
,
Z.
,
Zhang
,
J.
,
Yao
,
W.
, and
Chen
,
X.
,
2021
, “
A Surrogate Model With Data Augmentation and Deep Transfer Learning for Temperature Field Prediction of Heat Source Layout
,”
Struct. Multidiscip. Optim.
,
64
(
4
), pp.
2287
2306
.10.1007/s00158-021-02983-3
22.
Chen
,
X.
,
Chen
,
X.
,
Zhou
,
W.
,
Zhang
,
J.
, and
Yao
,
W.
,
2020
, “
The Heat Source Layout Optimization Using Deep Learning Surrogate Modeling
,”
Struct. Multidiscip. Optim.
,
62
(
6
), pp.
3127
3148
.10.1007/s00158-020-02659-4
23.
Yang
,
S.
,
Yao
,
W.
,
Zhu
,
L. F.
, and
Ke
,
L. L.
,
2023
, “
Predicting the Temperature Field of Composite Materials Under a Heat Source Using Deep Learning
,”
Compos. Struct.
,
321
, p.
117320
.10.1016/j.compstruct.2023.117320
24.
Hemmasian
,
A.
,
Ogoke
,
F.
,
Akbari
,
P.
,
Malen
,
J.
,
Beuth
,
J.
, and
Farimani
,
A. B.
, “
Surrogate Modeling of Melt Pool Thermal Field using Deep Learning
,”
Additive Manufacturing Letters
, 5, p.
100123
.10.1016/j.addlet.2023.100123
25.
Pfaff
,
T.
,
Fortunato
,
M.
,
Sanchez-Gonzalez
,
A.
, and
Battaglia
,
P.
W.,
2020
, “
Learning Mesh-Based Simulation With Graph Networks
,”
International Conference on Learning Representations
, Vol. 8, Apr. 26.10.48550/arXiv.2010.03409
26.
Dibua
,
O. G.
,
Yuksel
,
A.
,
Roy
,
N. K.
,
Foong
,
C. S.
, and
Cullinan
,
M.
,
2018
, “
Nanoparticle Sintering Model, Simulation and Calibration Against Experimental Data
,”
ASME
Paper No. MSEC2018-6383.10.1115/MSEC2018-6383
27.
Grose
,
J.
,
Dibua
,
O. G.
,
Behera
,
D.
,
Foong
,
C. S.
, and
Cullinan
,
M.
,
2023
, “
Simulation and Property Characterization of Nanoparticle Thermal Conductivity for a Microscale Selective Laser Sintering System
,”
ASME J. Heat Mass Transfer-Trans. ASME
,
145
(
5
), p.
052501
.10.1115/1.4055820
You do not currently have access to this content.