Abstract

There is a growing interest in developing the dry electrical discharge machining (EDM) process as a sustainable alternative to the conventional liquid dielectric-based EDM process. It is shown that the dry EDM process possesses advantages over the conventional process in terms of thermal damage, recast layer, and tool wear. However, there is a need to increase the productivity of the dry EDM process for its successful adaptation in the industry. This paper presents a dry EDM plasma discharge model with air as the dielectric medium. The model uses global modeling (0D) approach in which equations of mass balance, energy balance, and plasma expansion are solved simultaneously to obtain a time-dependent description of the plasma in terms of its composition, temperature, diameter, and heat flux to electrodes. The model includes reaction kinetics involving 622 reactions and 55 species to determine the air plasma composition. A single discharge dry EDM operation is successfully simulated using the model, and the effects of the interelectrode gap and discharge current on the plasma are studied. An increase in the interelectrode gap decreases the average electron density, plasma temperature, and heat flux. On the other hand, an increase in the discharge current increases the electron density, temperature, and diameter of the plasma linearly, while heat flux to the workpiece increases exponentially. Overall, the model provides an essential tool to study the dry EDM process mechanisms at a fundamental level and devise methods for process improvements.

References

1.
Kanmani Subbu
,
S. K.
,
Karthikeyan
,
G.
,
Ramkumar
,
J.
, and
Dhamodaran
,
S.
,
2011
, “
Plasma Characterization of Dry μ-EDM
,”
Int. J. Adv. Manuf. Technol.
,
56
(
1–4
), pp.
187
195
.10.1007/s00170-011-3162-4
2.
Roth
,
R.
,
Kuster
,
F.
, and
Wegener
,
K.
,
2013
, “
Influence of Oxidizing Gas on the Stability of Dry Electrical Discharge Machining Process
,”
Procedia CIRP
,
6
, pp.
338
343
.10.1016/j.procir.2013.03.029
3.
Macedo
,
F. T.
,
Wiessner
,
M.
,
Hollenstein
,
C.
,
Kuster
,
F.
, and
Wegener
,
K.
,
2016
, “
Dependence of Crater Formation in Dry EDM on Electrical Breakdown Mechanism
,”
Procedia CIRP
,
42
, pp.
161
166
.10.1016/j.procir.2016.02.212
4.
Macedo
,
F. T.
,
Wiessner
,
M.
,
Hollenstein
,
C.
,
Kuster
,
F.
, and
Wegener
,
K.
,
2016
, “
Investigation of the Fundamentals of Tool Electrode Wear in Dry EDM
,”
Procedia CIRP
,
46
, pp.
55
58
.10.1016/j.procir.2016.03.170
5.
Macedo
,
F. T.
,
Wiessner
,
M.
,
Bernardelli
,
G. C.
,
Kuster
,
F.
, and
Wegener
,
K.
,
2018
, “
Fundamental Investigation of EDM Plasmas, Part II: Parametric Analysis of Electric Discharges in Gaseous Dielectric Medium
,”
Procedia CIRP
,
68
, pp.
336
341
.10.1016/j.procir.2017.12.074
6.
Kunieda
,
M.
,
Yoshida
,
M.
, and
Taniguchi
,
N.
,
1997
, “
Electrical Discharge Machining in Gas
,”
CIRP Ann.
,
46
(
1
), pp.
143
146
.10.1016/S0007-8506(07)60794-X
7.
Govindan
,
P.
,
Agrawal
,
R.
, and
Joshi
,
S. S.
,
2011
, “
Experimental Investigation on Dry EDM Using Helium Gas Dielectric
,”
Int. J. Manuf. Technol. Manage.
,
24
(
1–4
), pp.
40
56
.10.1504/IJMTM.2011.046759
8.
Leão
,
F. N.
, and
Pashby
,
I. R.
,
2004
, “
A Review on the Use of Environmentally-Friendly Dielectric Fluids in Electrical Discharge Machining
,”
J. Mater. Process. Technol.
,
149
(
1–3
), pp.
341
346
.10.1016/j.jmatprotec.2003.10.043
9.
Khan
,
M. A. R.
,
Rahman
,
M. M.
,
Noor
,
M. M.
,
Kadirgama
,
K.
, and
Maleque
,
M. A.
,
2011
, “
Current Research Trends on Dry, Near-Dry and Powder Mixed Electrical Discharge Machining
,”
Adv. Mater. Res.
,
264–265
, pp.
956
961
.10.4028/www.scientific.net/AMR.264-265.956
10.
Wiessner
,
M.
,
Macedo
,
F. T.
,
Martendal
,
C. P.
,
Kuster
,
F.
, and
Wegener
,
K.
,
2018
, “
Fundamental Investigation of EDM Plasmas, Part I: A Comparison Between Electric Discharges in Gaseous and Liquid Dielectric Media
,”
Procedia CIRP
,
68
, pp.
330
335
.10.1016/j.procir.2017.12.073
11.
Kunleda
,
M.
,
Miyoshi
,
Y.
,
Takaya
,
T.
,
Nakajima
,
N.
,
ZhanBo
,
Y.
, and
Yoshida
,
M.
,
2003
, “
High Speed 3D Milling by Dry EDM
,”
CIRP Ann.
,
52
(
1
), pp.
147
150
.10.1016/S0007-8506(07)60552-6
12.
Yu
,
Z.
,
Jun
,
T.
, and
Masanori
,
K.
,
2004
, “
Dry Electrical Discharge Machining of Cemented Carbide
,”
J. Mater. Process. Technol.
,
149
(
1–3
), pp.
353
357
.10.1016/j.jmatprotec.2003.10.044
13.
Kao
,
C. C.
,
Tao
,
J.
, and
Shih
,
A. J.
,
2007
, “
Near Dry Electrical Discharge Machining
,”
Int. J. Mach. Tools Manuf.
,
47
(
15
), pp.
2273
2281
.10.1016/j.ijmachtools.2007.06.001
14.
Zhang
,
Q. H.
,
Du
,
R.
,
Zhang
,
J. H.
, and
Zhang
,
Q. B.
,
2006
, “
An Investigation of Ultrasonic-Assisted Electrical Discharge Machining in Gas
,”
Int. J. Mach. Tools Manuf.
,
46
(
12–13
), pp.
1582
1588
.10.1016/j.ijmachtools.2005.09.023
15.
Govindan
,
P.
, and
Joshi
,
S. S.
,
2010
, “
Experimental Characterization of Material Removal in Dry Electrical Discharge Drilling
,”
Int. J. Mach. Tools Manuf.
,
50
(
5
), pp.
431
443
.10.1016/j.ijmachtools.2010.02.004
16.
Pandey
,
P. C.
, and
Jilani
,
S. T.
,
1986
, “
Plasma Channel Growth and the Resolidified Layer in EDM
,”
Precis. Eng.
,
8
(
2
), pp.
104
110
.10.1016/0141-6359(86)90093-0
17.
Kanmani Subbu
,
S.
,
Ramkumar
,
J.
, and
Dhamodaran
,
S.
,
2011
, “
Single Discharge of Dry μ-EDM on Silicon: Crater and Plasma Temperature Measurement
,”
Adv. Mater. Res.
,
299–300
, pp.
1334
1337
.10.4028/www.scientific.net/AMR.299-300.1334
18.
Macedo
,
F. T.
,
Wiessner
,
M.
,
Hollenstein
,
C.
,
Esteves
,
P. M.
, and
Wegener
,
K.
,
2017
, “
Fundamental Investigation of Dry Electrical Discharge Machining (DEDM) by Optical Emission Spectroscopy and Its Numerical Interpretation
,”
Int. J. Adv. Manuf. Technol.
,
90
(
9–12
), pp.
3697
3709
.10.1007/s00170-016-9687-9
19.
Mujumdar
,
S. S.
,
Curreli
,
D.
,
Kapoor
,
S. G.
, and
Ruzic
,
D.
,
2014
, “
A Model of Micro Electro-Discharge Machining Plasma Discharge in Deionized Water
,”
ASME J. Manuf. Sci. Eng.
,
136
(
3
), p.
031011
.10.1115/1.4026298
20.
Mujumdar
,
S. S.
,
Curreli
,
D.
, and
Kapoor
,
S. G.
,
2016
, “
Effect of Dielectric Electrical Conductivity on the Characteristics of Micro Electro-Discharge Machining Plasma and Material Removal
,”
ASME J. Micro- Nano-Manuf.
,
4
(
2
), p.
021006
.10.1115/1.4033344
21.
Sakiyama
,
Y.
,
Graves
,
D. B.
,
Chang
,
H.-W.
,
Shimizu
,
T.
, and
Morfill
,
G. E.
,
2012
, “
Plasma Chemistry Model of Surface Microdischarge in Humid Air and Dynamics of Reactive Neutral Species
,”
J. Phys. D: Appl. Phys.
,
45
(
42
), p.
425201
.10.1088/0022-3727/45/42/425201
22.
Lieberman
,
M. A.
, and
Lichtenberg
,
A. J.
,
1994
, “
Principles of Plasma Discharge and Materials Processing
,”
MRS Bull.
,
30
(
12
), pp.
899
901
.
23.
Lee
,
C.
,
Graves
,
D. B.
,
Lieberman
,
M. A.
, and
Hess
,
D. W.
,
1994
, “
Global Model of Plasma Chemistry in a High Density Oxygen Discharge
,”
J. Electrochem. Soc.
,
141
(
6
), pp.
1546
1555
.10.1149/1.2054960
24.
Lee
,
C.
, and
Lieberman
,
M. A.
,
1995
, “
Global Model of Ar, O2, Cl2, and Ar/O2 High-Density Plasma Discharges
,”
J. Vac. Sci. Technol., A
,
13
(
2
), pp.
368
380
.10.1116/1.579366
25.
Gudmundsson
,
J. T.
,
2002
, “
Global Model of Plasma Chemistry in a Low-Pressure O2/F2 Discharge
,”
J. Phys. D: Appl. Phys.
,
35
(
4
), pp.
328
341
.10.1088/0022-3727/35/4/308
26.
Kossyi
,
I. A.
,
Kostinsky
,
A. Y.
,
Matveyev
,
A. A.
, and
Silakov
,
V. P.
,
1992
, “
Kinetic Scheme of the Non-Equilibrium Discharge in Nitrogen-Oxygen Mixtures
,”
Plasma Sources Sci. Technol.
,
1
(
3
), pp.
207
220
.10.1088/0963-0252/1/3/011
27.
Capitelli
,
M.
,
Ferreira
,
C. M.
,
Gordiets
,
B. F.
, and
Osipov
,
A. I.
,
2013
,
Plasma Kinetics in Atmospheric Gases
, Vol.
31
,
Springer-Verlag, Berlin
.
28.
Williams
,
T. L.
,
Adams
,
N. G.
,
Babcock
,
L. M.
,
Herd
,
C. R.
, and
Geoghegan
,
M.
,
1996
, “
Production and Loss of the Water-Related Species H3O+, H2O, and OH in Dense Interstellar Clouds
,”
Mon. Not. R. Astron. Soc.
,
282
(
2
), pp.
413
420
.10.1093/mnras/282.2.413
29.
Chanin
,
L. M.
,
Phelps
,
A.
, and
Biondi
,
M. A.
,
1962
, “
Measurements of the Attachment of Low-Energy Electrons to Oxygen Molecules
,”
Phys. Rev.
,
128
(
1
), pp.
219
230
.10.1103/PhysRev.128.219
30.
Cenian
,
A.
A.,
Chernukho
,
A.
, and
Borodin
,
V.
,
1995
, “
Modeling of Plasma-Chemical Reactions in Gas Mixture of CO2 Lasers. ii. Theoretical Model and Its Verification
,”
Contrib. Plasma Phys.
,
35
(
3
), pp.
273
296
.10.1002/ctpp.2150350309
31.
Olson
,
R. E.
,
Peterson
,
J. R.
, and
Moseley
,
J.
,
1970
, “
Ion–Ion Recombination Total Cross Sections–Atomic Species
,”
J. Chem. Phys.
,
53
(
9
), pp.
3391
3397
.10.1063/1.1674506
32.
McFarland
,
M.
,
Dunkin
,
D. B.
,
Fehsenfeld
,
F. C.
,
Schmeltekopf
,
A. L.
, and
Ferguson
,
E. E.
,
1972
, “
Collisional Detachment Studies of NO−
,”
J. Chem. Phys.
,
56
(
5
), pp.
2358
2364
.10.1063/1.1677542
33.
Märk
,
T. D.
, and
Oskam
,
H. J.
,
1971
, “
Ion Production and Loss Processes in Helium-Nitrogen Mixtures
,”
Phys. Rev. A
,
4
(
4
), pp.
1445
1452
.10.1103/PhysRevA.4.1445
34.
Anicich
,
V. G.
,
1993
, “
Evaluated Bimolecular Ion-Molecule Gas Phase Kinetics of Positive Ions for Use in Modeling Planetary Atmospheres, Cometary Comae, and Interstellar Clouds
,”
J. Phys. Chem. Ref. Data
,
22
(
6
), pp.
1469
1569
.10.1063/1.555940
35.
Eichwald
,
O.
,
Yousfi
,
M.
,
Hennad
,
A.
, and
Benabdessadok
,
M. D.
,
1997
, “
Coupling of Chemical Kinetics, Gas Dynamics, and Charged Particle Kinetics Models for the Analysis of NO Reduction From Flue Gases
,”
J. Appl. Phys.
,
82
(
10
), pp.
4781
4794
.10.1063/1.366336
36.
Sieck
,
L. W.
,
Heron
,
J. T.
, and
Green
,
D. S.
,
2000
, “
Chemical Kinetics Database and Predictive Schemes for Humid Air Plasma Chemistry. Part i: Positive Ion–Molecule Reactions
,”
Plasma Chem. Plasma Process.
,
20
(
2
), pp.
235
258
.10.1023/A:1007021207704
37.
Stalder
,
K. R.
,
Vidmar
,
R. J.
,
Nersisyan
,
G.
, and
Graham
,
W. G.
,
2006
, “
Modeling the Chemical Kinetics of High-Pressure Glow Discharges in Mixtures of Helium With Real Air
,”
J. Appl. Phys.
,
99
(
9
), p.
093301
.10.1063/1.2193170
38.
Dorai
,
R.
, and
Kushner
,
M. J.
,
2003
, “
A Model for Plasma Modification of Polypropylene Using Atmospheric Pressure Discharges
,”
J. Phys. D: Appl. Phys.
,
36
(
6
), pp.
666
685
.10.1088/0022-3727/36/6/309
39.
Tochikubo
,
F.
, and
Arai
,
H.
,
2002
, “
Numerical Simulation of Streamer Propagation and Radical Reactions in Positive Corona Discharge in N2/NO and N2/O2/NO
,”
Jpn. J. Appl. Phys.
,
41
(
2A
), pp.
844
852
.10.1143/JJAP.41.844
40.
Böhringer
,
H.
,
Arnold
,
F.
,
Smith
,
D.
, and
Adams
,
N.
G.,
1983
, “
A Study of the Temperature Dependences of the N2++ N2 → N4+ and O2++ O2 → O4+ Association Reactions Using the Selected-Ion Flow-Tube and Drift-Tube Techniques
,”
Int. J. Mass Spectrom. Ion Phys.
,
52
(
1
), pp.
25
41
.10.1016/0020-7381(83)85089-X
41.
Herron
,
J. T.
, and
Green
,
D. S.
,
2001
, “
Chemical Kinetics Database and Predictive Schemes for Nonthermal Humid Air Plasma Chemistry. Part ii. Neutral Species Reactions
,”
Plasma Chem. Plasma Process.
,
21
(
3
), pp.
459
481
.10.1023/A:1011082611822
42.
Mallard
,
W.
,
Westley
,
F.
,
Herron
,
J.
,
Hampson
,
R.
, and
Frizzell
,
D.,
1998, “
NIST Chemical Kinetics Database
,” Nat'l Std. Ref. Data Series (NIST NSRDS),
National Institute of Standards and Technology
,
Gaithersburg, MD
.
43.
Atkinson
,
R.
,
Baulch
,
D. L.
,
Cox
,
R. A.
,
Crowley
,
J. N.
,
Hampson
,
R. F.
, Jr.
,
Kerr
,
J. A.
,
Rossi
,
M. J.
, and
Troe
,
J.
,
2001
, “
Summary of Evaluated Kinetic and Photochemical Data for Atmospheric Chemistry
,”
IUPAC Subcommittee Gas Kinetic Data Evaluation Atmospheric Chemistry
.
44.
Kushner
,
M. J.
,
1993
, “
Plasma Chemistry of He/O2/SiH4 and He/N2O/SiH4 Mixtures for Remote Plasma-Activated Chemical-Vapor Deposition of Silicon Dioxide
,”
J. Appl. Phys.
,
74
(
11
), pp.
6538
6553
.10.1063/1.355115
45.
Jeong
,
J. Y.
,
Park
,
J.
,
Henins
,
I.
,
Babayan
,
S. E.
,
Tu
,
V. J.
,
Selwyn
,
G. S.
,
Ding
,
G.
, and
Hicks
,
R. F.
,
2000
, “
Reaction Chemistry in the Afterglow of an Oxygen-Helium, Atmospheric-Pressure Plasma
,”
J. Phys. Chem. A
,
104
(
34
), pp.
8027
8032
.10.1021/jp0012449
46.
Person
,
J. C.
, and
Ham
,
D. O.
,
1988
, “
Removal of SO/Sub 2/and NOsub (x) From Stack Gases by Electron Beam Irradiation
,”
Radiat. Phys. Chem., Int. J. Radiat. Appl. Instrum., Part C; (United Kingdom
),
31
(
1–3
), pp.
1
8
.10.1016/1359-0197(88)90103-8
47.
Rajurkar
,
K. P.
, and
Pandit
,
S. M.
,
1986
, “
Formation and Ejection of EDM Debris
,”
ASME J. Eng. Ind.
,
108
(
1
), pp.
22
26
.10.1115/1.3187036
48.
Sedov
,
L. I.
,
2018
,
Similarity and Dimensional Methods in Mechanics
,
CRC Press
,
Boca Raton, FL
.
49.
Wang
,
Q.
,
Jiang
,
L.
,
Sun
,
J.
,
Pan
,
C.
,
Han
,
W.
,
Wang
,
G.
,
Wang
,
F.
,
Zhang
,
K.
,
Li
,
M.
, and
Lu
,
Y.
,
2018
, “
Structure-Mediated Excitation of Air Plasma and Silicon Plasma Expansion in Femtosecond Laser Pulses Ablation
,”
Research
,
2018
, p.
5709748
.10.1155/2018/5709748
50.
Campanella
,
B.
,
Legnaioli
,
S.
,
Pagnotta
,
S.
,
Poggialini
,
F.
, and
Palleschi
,
V.
,
2019
, “
Shock Waves in Laser-Induced Plasmas
,”
Atoms
,
7
(
2
), p.
57
.10.3390/atoms7020057
51.
Ikai
,
T.
, and
Hashigushi
,
K.
,
1995
, “
Heat Input for Crater Formation in EDM
,”
Proceedings of the International Symposium for Electro-Machining-ISEM XI
, EPFL, Lausanne, Switzerland, pp.
163
170
.
52.
Kunieda
,
M.
,
Lauwers
,
B.
,
Rajurkar
,
K. P.
, and
Schumacher
,
B.
,
2005
, “
Advancing EDM Through Fundamental Insight Into the Process
,”
CIRP Ann.
,
54
(
2
), pp.
64
87
.10.1016/S0007-8506(07)60020-1
53.
Izquierdo
,
B.
,
Sánchez
,
J. A.
,
Ortega
,
N.
,
Plaza
,
S.
, and
Pombo
,
I.
,
2011
, “
Insight Into Fundamental Aspects of the EDM Process Using Multidischarge Numerical Simulation
,”
Int. J. Adv. Manuf. Technol.
,
52
(
1–4
), pp.
195
206
.10.1007/s00170-010-2709-0
54.
Macedo
,
F. T.
,
2018
, “
Fundamental Investigation of Dry EDM Plasmas
,” Ph.D. thesis,
ETH Zurich
,
Zürich, Switzerland
.
55.
Bayki
,
S.
, and
Mujumdar
,
S.
,
2023
, “
A 1D Model for Prediction of Dry Electrical Discharge Machining (Dry-EDM) Plasma Characteristics
,”
J. Manuf. Processes
,
102
, pp.
417
428
.10.1016/j.jmapro.2023.07.036
56.
Natsu
,
W.
,
Ojima
,
S.
,
Kobayashi
,
T.
, and
Kunieda
,
M.
,
2004
, “
Temperature Distribution Measurement in EDM Arc Plasma Using Spectroscopy
,”
JSME Int. J., Ser. C
,
47
(
1
), pp.
384
390
.10.1299/jsmec.47.384
57.
Subbian
,
K. S.
,
Janakarajan
,
R.
, and
Santhanagopalan
,
D.
,
2011
, “
Plasma Temperature and Electron Density of Dry μ-EDM on Stainless Steel and Silicon: A Comparison
,”
Int. J. Autom. Technol.
,
5
(
1
), pp.
45
51
.10.20965/ijat.2011.p0045
58.
Subbu
,
S. K.
,
Dhamodaran
,
S.
, and
Ramkumar
,
J.
,
2012
, “
Microelectric Discharge Plasma: Characterization and Applications
,”
Mater. Manuf. Processes
,
27
(
11
), pp.
1208
1212
.10.1080/10426914.2012.663127
59.
Wiessner
,
M.
,
2021
, “
Design of Spatial and Time Resolved Plasma Diagnostics for Small Gap Discharges
,” Ph.D. thesis,
ETH Zurich
,
Zürich, Switzerland
.
You do not currently have access to this content.