Abstract

The rapid development of flexible and wearable electronic devices has increased the demand for highly flexible, conductive, and durable materials for device circuits. Over the past decade, laser-scribed graphene (LSG) has been widely employed for the contact-free and mask-free fabrication of conductive carbon circuits or patterns from polyimide or other precursors due to its excellent physiochemical properties. On the other hand, conducting polymer poly (3,4-ethylenedioxythiophene): poly (styrene sulfonate) (PEDOT: PSS) has also been extensively studied for fabricating flexible electronics thanks to its excellent electronic/ionic conductivity and flexibility. However, both materials have their limitations, making them still difficult to use directly for manufacturing high-performance electronic devices. For example, the LSG is fragile and easily damaged, and PEDOT: PSS is easily clustered in aqueous solutions, reducing the conductivity. To overcome the limitations, in this paper, we report a facile and cost-effective LSG modifying method with PEDOT: PSS to enhance the performance, which combines the exceptional sensing properties of the PEDOT: PSS with the electronic advantages of the LSG. The modification method can be readily extended using inkjet printing or screen printing. The characterization and comparison experiments demonstrate that the electric conductivity can be improved to three times as that of the original LSG by PEDOT: PSS modification. The modified LSG has better flexibility, which is more suitable for flexible and wearable electronics.

References

1.
Xu
,
Y.
,
Fei
,
Q.
,
Page
,
M.
,
Zhao
,
G.
,
Ling
,
Y.
,
Chen
,
D.
, and
Yan
,
Z.
,
2021
, “
Laser-Induced Graphene for Bioelectronics and Soft Actuators
,”
Nano Res.
,
14
(
9
), pp.
3033
3050
.10.1007/s12274-021-3441-9
2.
Stöberl
,
U.
,
Wurstbauer
,
U.
,
Wegscheider
,
W.
,
Weiss
,
D.
, and
Eroms
,
J.
,
2008
, “
Morphology and Flexibility of Graphene and Few-Layer Graphene on Various Substrates
,”
Appl. Phys. Lett.
,
93
(
5
), p.
051906
.10.1063/1.2968310
3.
Novoselov
,
K. S.
,
Geim
,
A. K.
,
Morozov
,
S. V.
,
Jiang
,
D. E.
,
Zhang
,
Y.
,
Dubonos
,
S. V.
,
Grigorieva
,
I. V.
, and
Firsov
,
A. A.
,
2000
,. “
Electric Field Effect in Atomically Thin Carbon Films
,”
Science
,
306
(
5696
), pp.
666
669
.10.1126/science.1102896
4.
Bae
,
S.
,
Kim
,
H.
,
Lee
,
Y.
,
Xu
,
X.
,
Park
,
J.-S.
,
Zheng
,
Y.
,
Balakrishnan
,
J.
, et al.,
2010
, “
Roll-to-Roll Production of 30-Inch Graphene Films for Transparent Electrodes
,”
Nat. Nanotechnol.
,
5
(
8
), pp.
574
578
.10.1038/nnano.2010.132
5.
Stankovich
,
S.
,
Dikin
,
D. A.
,
Dommett
,
G. H. B.
,
Kohlhaas
,
K. M.
,
Zimney
,
E. J.
,
Stach
,
E. A.
,
Piner
,
R. D.
,
Nguyen
,
S. T.
, and
Ruoff
,
R. S.
,
2006
, “
Graphene-Based Composite Materials
,”
Nature
,
442
(
7100
), pp.
282
286
.10.1038/nature04969
6.
Wu
,
J.
,
Pisula
,
W.
, and
Müllen
,
K.
,
2007
, “
Graphenes as Potential Material for Electronics
,”
Chem. Rev.
,
107
(
3
), pp.
718
747
.10.1021/cr068010r
7.
Lin
,
J.
,
Peng
,
Z.
,
Liu
,
Y.
,
Ruiz-Zepeda
,
F.
,
Ye
,
R.
,
Samuel
,
E. L. G.
,
Yacaman
,
M. J.
,
Yakobson
,
B. I.
, and
Tour
,
J. M.
,
2014
, “
Laser-Induced Porous Graphene Films From Commercial Polymers
,”
Nat. Commun.
,
5
(
1
), p.
5714
.10.1038/ncomms6714
8.
Tehrani
,
F.
, and
Bavarian
,
B.
,
2016
, “
Facile and Scalable Disposable Sensor Based on Laser Engraved Graphene for Electrochemical Detection of Glucose
,”
Sci. Rep.
,
6
(
1
), p.
27975
.10.1038/srep27975
9.
Zhang
,
Y.
,
Zhu
,
H.
,
Sun
,
P.
,
Sun
,
C.
,
Huang
,
H.
,
Guan
,
S.
,
Liu
,
H.
,
Zhang
,
H.
,
Zhang
,
C.
, and
Qin
,
K.
,
2019
, “
Laser-Induced Graphene-Based Non-Enzymatic Sensor for Detection of Hydrogen Peroxide
,”
Electroanalysis
,
31
(
7
), pp.
1334
1341
.10.1002/elan.201900043
10.
Mamleyev
,
E. R.
,
Heissler
,
S.
,
Nefedov
,
A.
,
Weidler
,
P. G.
,
Nordin
,
N.
,
Kudryashov
,
V. V.
,
Länge
,
K.
,
MacKinnon
,
N.
, and
Sharma
,
S.
,
2019
, “
Laser-Induced Hierarchical Carbon Patterns on Polyimide Substrates for Flexible Urea Sensors
,”
NPJ Flexible Electron.
,
3
(
1
), p.
2
.10.1038/s41528-018-0047-8
11.
Sun
,
K.
,
Zhang
,
S.
,
Li
,
P.
,
Xia
,
Y.
,
Zhang
,
X.
,
Du
,
D.
,
Isikgor
,
F. H.
, and
Ouyang
,
J.
,
2015
, “
Review on Application of PEDOTs and PEDOT: PSS in Energy Conversion and Storage Devices
,”
J. Mater. Sci.: Mater. Electron.
,
26
(
7
), pp.
4438
4462
.10.1007/s10854-015-2895-5
12.
Nardes
,
A. M.
,
Kemerink
,
M.
, and
Janssen
,
R. A. J.
,
2007
, “
Anisotropic Hopping Conduction in Spin-Coated PEDOT: PSS Thin Films
,”
Phys. Rev. B
,
76
(
8
), p.
085208
.10.1103/PhysRevB.76.085208
13.
Ding
,
Y.
,
Yang
,
J.
,
Tolle
,
C. R.
, and
Zhu
,
Z.
,
2018
, “
Flexible and Compressible PEDOT: PSS@Melamine Conductive Sponge Prepared Via One-Step Dip Coating as Piezoresistive Pressure Sensor for Human Motion Detection
,”
ACS Appl. Mater. Interfaces
,
10
(
18
), pp.
16077
16086
.10.1021/acsami.8b00457
14.
Olowo
,
O. O.
,
Zhang
,
R.
,
Sherehiy
,
A.
,
Goulet
,
B.
,
Curry
,
A.
,
Wei
,
D.
,
Yang
,
Z.
,
Alqatamin
,
M.
, and
Popa
,
D. O.
,
2022
, “
Inkjet Printing of PEDOT: PSS Inks for Robotic Skin Sensors
,”
ASME
Paper No. MSEC2022-80989.10.1115/MSEC2022-80989
15.
Dominguez‐Alfaro
,
A.
,
Gabirondo
,
E.
,
Alegret
,
N.
,
De León‐Almazán
,
C. M.
,
Hernandez
,
R.
,
Vallejo‐Illarramendi
,
A.
,
Prato
,
M.
, and
Mecerreyes
,
D.
,
2021
, “
3D Printable Conducting and Biocompatible PEDOT-graft-PLA Copolymers by Direct Ink Writing
,”
Macromol. Rapid Commun.
,
42
(
12
), p.
2100100
.10.1002/marc.202100100
16.
Zhao
,
P.
,
Zhang
,
R.
,
Tong
,
Y.
,
Zhao
,
X.
,
Zhang
,
T.
,
Tang
,
Q.
, and
Liu
,
Y.
,
2020
, “
Strain-Discriminable Pressure/Proximity Sensing of Transparent Stretchable Electronic Skin Based on PEDOT: PSS/SWCNT Electrodes
,”
ACS Appl. Mater. Interfaces
,
12
(
49
), pp.
55083
55093
.10.1021/acsami.0c16546
17.
Keene
,
S. T.
,
van der Pol
,
T. P. A.
,
Zakhidov
,
D.
,
Weijtens
,
C. H. L.
,
Janssen
,
R. A. J.
,
Salleo
,
A.
, and
van de Burgt
,
Y.
,
2020
, “
Enhancement-Mode PEDOT: PSS Organic Electrochemical Transistors Using Molecular De-Doping
,”
Adv. Mater.
,
32
(
19
), p.
2000270
.10.1002/adma.202000270
18.
Tseghai
,
G. B.
,
Mengistie
,
D. A.
,
Malengier
,
B.
,
Fante
,
K. A.
, and
Van Langenhove
,
L.
,
2020
, “
PEDOT: PSS-Based Conductive Textiles and Their Applications
,”
Sensors
,
20
(
7
), p.
1881
.10.3390/s20071881
19.
Ouyang
,
J.
,
Chu
,
C.-W.
,
Chen
,
F.-C.
,
Xu
,
Q.
, and
Yang
,
Y.
,
2005
, “
High-Conductivity Poly (3,4-Ethylenedioxythiophene): Poly (Styrene Sulfonate) Film and Its Application in Polymer Optoelectronic Devices
,”
Adv. Funct. Mater.
,
15
(
2
), pp.
203
208
.10.1002/adfm.200400016
20.
Moczko
,
E.
,
Istamboulie
,
G.
,
Calas-Blanchard
,
C.
,
Rouillon
,
R.
, and
Noguer
,
T.
,
2012
, “
Biosensor Employing Screen-Printed PEDOT: PSS for Sensitive Detection of Phenolic Compounds in Water
,”
J. Polym. Sci., Part A: Polym. Chem.
,
50
(
11
), pp.
2286
2292
.10.1002/pola.26009
21.
Wan
,
Z.
,
Nguyen
,
N.-T.
,
Gao
,
Y.
, and
Li
,
Q.
,
2020
, “
Laser Induced Graphene for Biosensors
,”
Sustainable Mater. Technol.
,
25
, p.
e00205
.10.1016/j.susmat.2020.e00205
22.
Chang
,
J.
,
He
,
J.
,
Lei
,
Q.
, and
Li
,
D.
,
2018
, “
Electrohydrodynamic Printing of Microscale PEDOT: PSS-PEO Features With Tunable Conductive/Thermal Properties
,”
ACS Appl. Mater. Interfaces
,
10
(
22
), pp.
19116
19122
.10.1021/acsami.8b04051
23.
Shi
,
H.
,
Liu
,
C.
,
Jiang
,
Q.
, and
Xu
,
J.
,
2015
, “
Effective Approaches to Improve the Electrical Conductivity of PEDOT: PSS: A Review
,”
Adv. Electron. Mater.
,
1
(
4
), p.
1500017
.10.1002/aelm.201500017
24.
Xu
,
G.
,
Jarjes
,
Z. A.
,
Desprez
,
V.
,
Kilmartin
,
P. A.
, and
Travas-Sejdic
,
J.
,
2018
, “
Sensitive, Selective, Disposable Electrochemical Dopamine Sensor Based on PEDOT-Modified Laser Scribed Graphene
,”
Biosens. Bioelectron.
,
107
, pp.
184
191
.10.1016/j.bios.2018.02.031
25.
Cho
,
E. C.
,
Chang-Jian
,
C. W.
,
Syu
,
W. L.
,
Tseng
,
H. S.
,
Lee
,
K. C.
,
Huang
,
J. H.
, and
Hsiao
,
Y. S.
,
2020
, “
PEDOT-Modified Laser-Scribed Graphene Films as Bginder– and Metallic Current Collector–Free Electrodes for Large-Sized Supercapacitors
,”
Appl. Surf. Sci.
,
518
, p.
146193
.10.1016/j.apsusc.2020.146193
26.
Ferrari
,
A. C.
,
Meyer
,
J. C.
,
Scardaci
,
V.
,
Casiraghi
,
C.
,
Lazzeri
,
M.
,
Mauri
,
F.
,
Piscanec
,
S.
, et al.,
2006
, “
Raman Spectrum of Graphene and Graphene Layers
,”
Phys. Rev. Lett.
,
97
(
18
), p.
187401
.10.1103/PhysRevLett.97.187401
27.
Jothilakshmi
,
R.
,
Ramakrishnan
,
V.
,
Thangavel
,
R.
,
Kumar
,
J.
,
Sarua
,
A.
, and
Kuball
,
M.
,
2009
, “
Micro-Raman Scattering Spectroscopy Study of Li-Doped and Undoped ZnO Needle Crystals
,”
J. Raman Spectrosc.
,
40
(
5
), pp.
556
561
.10.1002/jrs.2164
28.
Tuschel
,
D.
,
2016
, “
Selecting an Excitation Wavelength for Raman Spectroscopy
,”
Spectroscopy
,
31
(
3
), pp.
14
23
.https://www.spectroscopyonline.com/view/selectingexcitation-wavelength-raman-spectroscopy
29.
Monezi
,
N. M.
, and
Ando
,
R. A.
,
2016
, “
Spectroscopic Characterization of Charge Transfer Complexes of Tcne With Aromatic amines - The First Step of Tricyanovinylation Reaction
,”
J. Braz. Chem. Soc.
,
28
, pp.
1665
1672
.10.21577/0103-5053.20160329
30.
Botti
,
S.
,
Almaviva
,
S.
,
Cantarini
,
L.
,
Palucci
,
A.
,
Puiu
,
A.
, and
Rufoloni
,
A.
,
2013
, “
Trace Level Detection and Identification of Nitro-Based Explosives by Surface-Enhanced Raman Spectroscopy
,”
J. Raman Spectrosc.
,
44
(
3
), pp.
463
468
.10.1002/jrs.4203
31.
Guthrie
,
G. B.
, Jr
,
Scott
,
D. W.
, and
Waddington
,
G.
,
1952
, “
Thiacyclopropane (Ethylene Sulfide): Infrared Spectrum, Vapor Pressure and Some Thermodynamic Properties1
,”
J. Am. Chem. Soc.
,
74
(
11
), pp.
2795
2800
.10.1021/ja01131a028
You do not currently have access to this content.