Abstract

Electrophysiological recording and stimulation of neuron activities are important for us to understand the function and dysfunction of the nervous system. To record/stimulate neuron activities as voltage fluctuation extracellularly, microelectrode array (MEA) implants are a promising tool to provide high temporal and spatial resolution for neuroscience studies and medical treatments. The design configuration and recording capabilities of the MEAs have evolved dramatically since their invention and manufacturing process development has been a key driving force for such advancement. Over the past decade, since the White House Brain Research Through Advancing Innovative Neurotechnologies (BRAIN) Initiative launched in 2013, advanced manufacturing processes have enabled advanced MEAs with increased channel count and density, access to more brain areas, more reliable chronic performance, as well as minimal invasiveness and tissue reaction. In this state-of-the-art review paper, three major types of electrophysiological recording MEAs widely used nowadays, namely, microwire-based, silicon-based, and flexible MEAs are introduced and discussed. Conventional design and manufacturing processes and materials used for each type are elaborated, followed by a review of further development and recent advances in manufacturing technologies and the enabling new designs and capabilities. The review concludes with a discussion on potential future directions of manufacturing process development to enable the long-term goal of large-scale high-density brain-wide chronic recordings in freely moving animals.

References

1.
Biran
,
R.
,
Martin
,
D. C.
, and
Tresco
,
P. A.
,
2005
, “
Neuronal Cell Loss Accompanies the Brain Tissue Response to Chronically Implanted Silicon Microelectrode Arrays
,”
Exp. Neurol.
,
195
(
1
), pp.
115
126
.10.1016/j.expneurol.2005.04.020
2.
Vitale
,
F.
,
Summerson
,
S. R.
,
Aazhang
,
B.
,
Kemere
,
C.
, and
Pasquali
,
M.
,
2015
, “
Neural Stimulation and Recording With Bidirectional, Soft Carbon Nanotube Fiber Microelectrodes
,”
ACS Nano
,
9
(
4
), pp.
4465
4474
.10.1021/acsnano.5b01060
3.
Qing
,
B.
, and
Wise
,
K. D.
,
2001
, “
Single-Unit Neural Recording With Active Microelectrode Arrays
,”
IEEE Trans. Biomed. Eng.
,
48
(
8
), pp.
911
920
.10.1109/10.936367
4.
Vöröslakos
,
M.
,
Petersen
,
P. C.
,
Vöröslakos
,
B.
, and
Buzsáki
,
G.
,
2021
, “
Metal Microdrive and Head Cap System for Silicon Probe Recovery in Freely Moving Rodent
,”
eLife
,
10
, p.
e65859
.10.7554/eLife.65859
5.
Jefferys
,
J. G.
,
1995
, “
Nonsynaptic Modulation of Neuronal Activity in the Brain: electric Currents and Extracellular Ions
,”
Physiol. Rev.
,
75
(
4
), pp.
689
723
.10.1152/physrev.1995.75.4.689
6.
Szostak
,
K. M.
,
Grand
,
L.
, and
Constandinou
,
T. G.
,
2017
, “
Neural Interfaces for Intracortical Recording: Requirements, Fabrication Methods, and Characteristics
,”
Front. Neurosci.
,
11
, p.
665
.https://www.frontiersin.org/articles/10.3389/fnins.2017.00665/full
7.
Veliev
,
F.
,
Han
,
Z.
,
Kalita
,
D.
,
Briançon-Marjollet
,
A.
,
Bouchiat
,
V.
, and
Delacour
,
C.
,
2017
, “
Recording Spikes Activity in Cultured Hippocampal Neurons Using Flexible or Transparent Graphene Transistors
,”
Front. Neurosci.
,
11
, p.
466
.10.3389/fnins.2017.00466
8.
Peyrache
,
A.
,
Dehghani
,
N.
,
Eskandar
,
E. N.
,
Madsen
,
J. R.
,
Anderson
,
W. S.
,
Donoghue
,
J. A.
,
Hochberg
,
L. R.
,
Halgren
,
E.
,
Cash
,
S. S.
, and
Destexhe
,
A.
,
2012
, “
Spatiotemporal Dynamics of Neocortical Excitation and Inhibition During Human Sleep
,”
Proc. Natl. Acad. Sci.
,
109
(
5
), pp.
1731
1736
.10.1073/pnas.1109895109
9.
Lee
,
D.
,
Lee
,
G.
,
Kwon
,
D.
,
Lee
,
S.
,
Kim
,
Y.
, and
Kim
,
J.
,
2018
, “
Flexon: A Flexible Digital Neuron for Efficient Spiking Neural Network Simulations
,” Proceedings of ACM/IEEE 45th Annual International Symposium on Computer Architecture (
ISCA
), Los Angeles, CA, June 1–6, pp.
275
288
.10.1109/ISCA.2018.00032
10.
Wellman
,
S. M.
,
Eles
,
J. R.
,
Ludwig
,
K. A.
,
Seymour
,
J. P.
,
Michelson
,
N. J.
,
McFadden
,
W. E.
,
Vazquez
,
A. L.
, and
Kozai
,
T. D. Y.
,
2018
, “
A Materials Roadmap to Functional Neural Interface Design
,”
Adv. Funct. Mater.
,
28
(
12
), p.
1701269
.10.1002/adfm.201701269
11.
Verkhratsky
,
A.
,
Krishtal
,
O. A.
, and
Petersen
,
O. H.
,
2006
, “
From Galvani to Patch Clamp: The Development of Electrophysiology
,”
Pflügers Arch.
,
453
(
3
), pp.
233
247
.10.1007/s00424-006-0169-z
12.
Hodgkin
,
A.
,
1979
, “
Edgar Douglas Adrian, Baron Adrian of Cambridge, 30 November 1889 - 4 August 1977
,”
Biograph. Memoirs Fellows R. Soc.
,
25
, pp.
1
73
.10.1098/rsbm.1979.0002
13.
Woldring
,
S.
, and
Dirken
,
M. N.
,
1950
, “
Spontaneous Unit-Activity in the Superficial Cortical Layers
,”
Acta Physiol. Pharmacol. Neerl
,
1
(
3
), pp.
369
379
.
14.
Strumwasser
,
F.
,
1958
, “
Long-Term Recording From Single Neurons in Brain of Unrestrained Mammals
,”
Science
,
127
(
3296
), pp.
469
470
.10.1126/science.127.3296.469
15.
Hubel
,
D. H.
, and
Wiesel
,
T. N.
,
1965
, “
Receptive Fields and Functional Architecture in Two Nonstriate Visual Areas (18 and 19) of the Cat
,”
J. Neurophysiol.
,
28
(
2
), pp.
229
289
.10.1152/jn.1965.28.2.229
16.
Hubel
,
D. H.
, and
Wiesel
,
T. N.
,
1959
, “
Receptive Fields of Single Neurones in the Cat's Striate Cortex
,”
J. Physiol.
,
148
(
3
), pp.
574
591
.10.1113/jphysiol.1959.sp006308
17.
Lehew
,
G.
, and
Nicolelis
,
M. A.
,
2008
, “
State-of-the-Art Microwire Array Design for Chronic Neural Recordings in Behaving Animals
,”
Methods Neural Ensemble Record.
,
2
, pp.
361
371
.
18.
Obaid
,
A.
,
Hanna
,
M.-E.
,
Wu
,
Y.-W.
,
Kollo
,
M.
,
Racz
,
R.
,
Angle
,
M. R.
,
Müller
,
J.
, et al.,
2020
, “
Massively Parallel Microwire Arrays Integrated With CMOS Chips for Neural Recording
,”
Sci. Adv.
,
6
(
12
), p.
eaay2789
.10.1126/sciadv.aay2789
19.
Yi
,
D.
,
Hartner
,
J. P.
,
Ung
,
B. S.
,
Zhu
,
H. L.
,
Watson
,
B. O.
, and
Chen
,
L.
,
2022
, “
3D Printed Skull Cap and Benchtop Fabricated Microwire-Based Microelectrode Array for Custom Rat Brain Recordings
,”
Bioengineering
,
9
(
10
), p.
550
.10.3390/bioengineering9100550
20.
Kellis
,
S.
,
Greger
,
B.
,
Hanrahan
,
S.
,
House
,
P.
, and
Brown
,
R.
,
2011
, “
Platinum Microwire for Subdural Electrocorticography Over Human Neocortex: Millimeter-Scale Spatiotemporal Dynamics
,” Proceedings of
Annual International Conference of the IEEE Engineering in Medicine and Biology Society
, Boston, MA, Aug. 30–Sept. 3, pp.
4761
4765
.10.1109/IEMBS.2011.6091179
21.
Chen
,
L.
,
Hartner
,
J.
,
Van Dyke
,
D.
,
Dong
,
T.
,
Watson
,
B.
, and
Shih
,
A.
,
2019
, “
Custom Skull Cap With Precision Guides for Deep Insertion of Cellular-Scale Microwire Into Rat Brain
,”
ASME
Paper No
. MSEC2019-2967.10.1115/MSEC2019-2967
22.
Gillis
,
W. F.
,
Lissandrello
,
C. A.
,
Shen
,
J.
,
Pearre
,
B. W.
,
Mertiri
,
A.
,
Deku
,
F.
,
Cogan
,
S.
,
Holinski
,
B. J.
,
Chew
,
D. J.
,
White
,
A. E.
,
Otchy
,
T. M.
, and
Gardner
,
T. J.
,
2018
, “
Carbon Fiber on Polyimide Ultra-Microelectrodes
,”
J. Neural Eng.
,
15
(
1
), p.
016010
.10.1088/1741-2552/aa8c88
23.
Mendrela
,
A. E.
,
Kim
,
K.
,
English
,
D.
,
McKenzie
,
S.
,
Seymour
,
J. P.
,
Buzsáki
,
G.
, and
Yoon
,
E.
,
2018
, “
A High-Resolution Opto-Electrophysiology System With a Miniature Integrated Headstage
,”
IEEE Trans. Biomed. Circuits Syst.
,
12
(
5
), pp.
1065
1075
.10.1109/TBCAS.2018.2852267
24.
Wise
,
K. D.
,
Angell
,
J. B.
, and
Starr
,
A.
,
1970
, “
An Integrated-Circuit Approach to Extracellular Microelectrodes
,”
IEEE Trans. Biomed. Eng.
,
BME-17
(
3
), pp.
238
247
.10.1109/TBME.1970.4502738
25.
Qing
,
B.
,
Wise
,
K. D.
, and
Anderson
,
D. J.
,
2000
, “
A High-Yield Microassembly Structure for Three-Dimensional Microelectrode Arrays
,”
IEEE Trans. Biomed. Eng.
,
47
(
3
), pp.
281
289
.10.1109/10.827288
26.
Campbell
,
P. K.
,
Jones
,
K. E.
,
Huber
,
R. J.
,
Horch
,
K. W.
, and
Normann
,
R. A.
,
1991
, “
A Silicon-Based, Three-Dimensional Neural Interface: manufacturing Processes for an Intracortical Electrode Array
,”
IEEE Trans. Biomed. Eng.
,
38
(
8
), pp.
758
768
.10.1109/10.83588
27.
Nordhausen
,
C. T.
,
Maynard
,
E. M.
, and
Normann
,
R. A.
,
1996
, “
Single Unit Recording Capabilities of a 100 Microelectrode Array
,”
Brain Res.
,
726
(
1-2
), pp.
129
140
.10.1016/0006-8993(96)00321-6
28.
Bennett
,
C.
,
Mohammed
,
F.
,
Álvarez-Ciara
,
A.
,
Nguyen
,
M. A.
,
Dietrich
,
W. D.
,
Rajguru
,
S. M.
,
Streit
,
W. J.
, and
Prasad
,
A.
,
2019
, “
Neuroinflammation, Oxidative Stress, and Blood-Brain Barrier (BBB) Disruption in Acute Utah Electrode Array Implants and the Effect of Deferoxamine as an Iron Chelator on Acute Foreign Body Response
,”
Biomaterials
,
188
, pp.
144
159
.10.1016/j.biomaterials.2018.09.040
29.
Christensen
,
M. B.
,
Pearce
,
S. M.
,
Ledbetter
,
N. M.
,
Warren
,
D. J.
,
Clark
,
G. A.
, and
Tresco
,
P. A.
,
2014
, “
The Foreign Body Response to the Utah Slant Electrode Array in the Cat Sciatic Nerve
,”
Acta Biomater.
,
10
(
11
), pp.
4650
4660
.10.1016/j.actbio.2014.07.010
30.
Rousche
,
P. J.
,
Pellinen
,
D. S.
,
Pivin
,
D. P.
,
Williams
,
J. C.
,
Vetter
,
R. J.
, and
Kipke
,
D. R.
,
2001
, “
Flexible Polyimide-Based Intracortical Electrode Arrays With Bioactive Capability
,”
IEEE Trans. Biomed. Eng.
,
48
(
3
), pp.
361
371
.10.1109/10.914800
31.
Hubel
,
D. H.
,
1957
, “
Tungsten Microelectrode for Recording From Single Units
,”
Science
,
125
(
3247
), pp.
549
550
.10.1126/science.125.3247.549
32.
Li
,
L.
,
Jiang
,
C.
,
Duan
,
W.
,
Wang
,
Z.
,
Zhang
,
F.
,
He
,
C.
,
Long
,
T.
, and
Li
,
L.
,
2022
, “
Electrochemical and Biological Performance of Hierarchical Platinum-Iridium Electrodes Structured by a Femtosecond Laser
,”
Microsyst. Nanoeng.
,
8
(
1
), p.
96
.10.1038/s41378-022-00433-8
33.
Guitchounts
,
G.
, and
Cox
,
D.
,
2020
, “
64-Channel Carbon Fiber Electrode Arrays for Chronic Electrophysiology
,”
Sci. Rep.
,
10
(
1
), p.
3830
.10.1038/s41598-020-60873-y
34.
Welle
,
E. J.
,
Patel
,
P. R.
,
Woods
,
J. E.
,
Petrossians
,
A.
,
della Valle
,
E.
,
Vega-Medina
,
A.
,
Richie
,
J. M.
,
Cai
,
D.
,
Weiland
,
J. D.
, and
Chestek
,
C. A.
,
2020
, “
Ultra-Small Carbon Fiber Electrode Recording Site Optimization and Improved In Vivo Chronic Recording Yield
,”
J. Neural Eng.
,
17
(
2
), p.
026037
.10.1088/1741-2552/ab8343
35.
Sahasrabuddhe
,
K.
,
Khan
,
A. A.
,
Singh
,
A. P.
,
Stern
,
T. M.
,
Ng
,
Y.
,
Tadić
,
A.
,
Orel
,
P.
, et al.,
2020
, “
The Argo: A High Channel Count Recording System for Neural Recording In Vivo
,”
J. Neural Eng.
,
18
(
1
), p.
015002
.10.1088/1741-2552/abd0ce
36.
Merritt
,
C. D.
, and
Justus
,
B. L.
,
2003
, “
Fabrication of Microelectrode Arrays Having High-Aspect-Ratio Microwires
,”
Chem. Mater.
,
15
(
13
), pp.
2520
2526
.10.1021/cm020821y
37.
Pei
,
W.
,
Zhao
,
H.
,
Zhao
,
S.
,
Fang
,
X.
,
Chen
,
S.
,
Gui
,
Q.
,
Tang
,
R.
,
Chen
,
Y.
,
Hong
,
B.
,
Gao
,
X.
, and
Chen
,
H.
,
2014
, “
Silicon-Based Wire Electrode Array for Neural Interfaces
,”
J. Micromech. Microeng.
,
24
(
9
), p.
095015
.10.1088/0960-1317/24/9/095015
38.
Saleh
,
M. S.
,
Ritchie
,
S. M.
,
Nicholas
,
M. A.
,
Gordon
,
H. L.
,
Hu
,
C.
,
Jahan
,
S.
,
Yuan
,
B.
,
Bezbaruah
,
R.
,
Reddy
,
J. W.
,
Ahmed
,
Z.
,
Chamanzar
,
M.
,
Yttri
,
E. A.
, and
Panat
,
R. P.
,
2022
, “
CMU Array: A 3D Nanoprinted, Fully Customizable High-Density Microelectrode Array Platform
,”
Sci. Adv.
,
8
(
40
), p.
eabj4853
.10.1126/sciadv.abj4853
39.
Jarfors
,
A. E. W.
, and
Seifeddine
,
S.
,
2013
, “
Metal Casting
,”
Handbook of Manufacturing Engineering and Technology
,
A.
Nee
, ed.,
Springer London
,
London
, pp.
1
90
.
40.
Cantor
,
B.
,
Chang
,
I. T. H.
,
Knight
,
P.
, and
Vincent
,
A. J. B.
,
2004
, “
Microstructural Development in Equiatomic Multicomponent Alloys
,”
Mater. Sci. Eng.: A
,
375–377
, pp.
213
218
.10.1016/j.msea.2003.10.257
41.
Shen
,
Q.
,
Kong
,
X.
, and
Chen
,
X.
,
2021
, “
Fabrication of Bulk Al-Co-Cr-Fe-Ni High-Entropy Alloy Using Combined Cable Wire Arc Additive Manufacturing (CCW-AAM): Microstructure and Mechanical Properties
,”
J. Mater. Sci. Technol.
,
74
, pp.
136
142
.10.1016/j.jmst.2020.10.037
42.
Jia
,
Z.
,
Hao
,
S.
,
Wen
,
J.
,
Li
,
S.
,
Peng
,
W.
,
Huang
,
R.
, and
Xu
,
X.
,
2020
, “
Electrochemical Fabrication of Metal–Organic Frameworks Membranes and Films: A Review
,”
Microporous Mesoporous Mater.
,
305
, p.
110322
.10.1016/j.micromeso.2020.110322
43.
Perumal
,
V.
,
Amil
,
N.
,
Aiman
,
N.
, and
Hashim
,
U.
,
2013
, “
Fabrication and Characterization of Metal Microwire Transducer for Biochip Application
,”
Proceedings of RSM IEEE Regional Symposium on Micro and Nanoelectronics
, Daerah Langkawi, Malaysia, Sept. 25–27, pp.
29
32
.10.1109/RSM.2013.6706465
44.
Pérez-Díaz
,
O.
,
Quiroga-González
,
E.
,
Hansen
,
S.
,
Silva-González
,
N. R.
,
Carstensen
,
J.
, and
Adelung
,
R.
,
2019
, “
Fabrication of Silicon Microwires by a Combination of Chemical Etching Steps and Their Analysis as Anode Material in Li-Ion Batteries
,”
Mater. Technol.
,
34
(
13
), pp.
785
791
.10.1080/10667857.2019.1629059
45.
Chen
,
M.
,
Mu
,
L.
,
Wang
,
S.
,
Cao
,
X.
,
Liang
,
S.
,
Wang
,
Y.
,
She
,
G.
,
Yang
,
J.
,
Wang
,
Y.
, and
Shi
,
W.
,
2020
, “
A Single Silicon Nanowire-Based Ratiometric Biosensor for Ca2+ at Various Locations in a Neuron
,”
ACS Chem. Neurosci.
,
11
(
9
), pp.
1283
1290
.10.1021/acschemneuro.0c00041
46.
Woods
,
J. E.
,
Welle
,
E. J.
,
Chen
,
L.
,
Richie
,
J. M.
,
Patel
,
P. R.
, and
Chestek
,
C. A.
,
2020
, “
Bending Properties of Materials for Peripheral Nerve Interfaces
,” Proceedings of IEEE 15th International Conference on Nano/Micro Engineered and Molecular System (
NEMS
), San Diego, CA, Sept. 27–30, pp.
407
412
.10.1109/NEMS50311.2020.9265629
47.
Vafaiee
,
M.
,
Mohammadpour
,
R.
,
Vossoughi
,
M.
,
Asadian
,
E.
,
Janahmadi
,
M.
, and
Sasanpour
,
P.
,
2021
, “
Carbon Nanotube Modified Microelectrode Array for Neural Interface
,”
Front. Bioeng. Biotechnol.
,
8
, p.
582713
.10.3389/fbioe.2020.582713
48.
Hejazi
,
M.
,
Tong
,
W.
,
Ibbotson
,
M. R.
,
Prawer
,
S.
, and
Garrett
,
D. J.
,
2021
, “
Advances in Carbon-Based Microfiber Electrodes for Neural Interfacing
,”
Front. Neurosci.
,
15
, p.
658703
.10.3389/fnins.2021.658703
49.
Santos
,
R. M.
,
Lourenço
,
C. F.
,
Piedade
,
A. P.
,
Andrews
,
R.
,
Pomerleau
,
F.
,
Huettl
,
P.
,
Gerhardt
,
G. A.
,
Laranjinha
,
J.
, and
Barbosa
,
R. M.
,
2008
, “
A Comparative Study of Carbon Fiber-Based Microelectrodes for the Measurement of Nitric Oxide in Brain Tissue
,”
Biosens. Bioelectron.
,
24
(
4
), pp.
704
709
.10.1016/j.bios.2008.06.034
50.
Yusof
,
N.
, and
Ismail
,
A. F.
,
2012
, “
Post Spinning and Pyrolysis Processes of Polyacrylonitrile (PAN)-Based Carbon Fiber and Activated Carbon Fiber: A Review
,”
J. Anal. Appl. Pyrol.
,
93
, pp.
1
13
.10.1016/j.jaap.2011.10.001
51.
Frank
,
E.
,
Hermanutz
,
F.
, and
Buchmeiser
,
M. R.
,
2012
, “
Carbon Fibers: Precursors, Manufacturing, and Properties
,”
Macromol. Mater. Eng.
,
297
(
6
), pp.
493
501
.10.1002/mame.201100406
52.
Richie
,
J. M.
,
Patel
,
P. R.
,
Welle
,
E. J.
,
Dong
,
T.
,
Chen
,
L.
,
Shih
,
A. J.
, and
Chestek
,
C. A.
,
2021
, “
Open-Source Toolkit: Benchtop Carbon Fiber Microelectrode Array for Nerve Recording
,”
J. Vis. Exp.
, (
176
), p.
e63099
.10.3791/63099
53.
Guitchounts
,
G.
,
Markowitz
,
J. E.
,
Liberti
,
W. A.
, and
Gardner
,
T. J.
,
2013
, “
A Carbon-Fiber Electrode Array for Long-Term Neural Recording
,”
J. Neural Eng.
,
10
(
4
), p.
046016
.10.1088/1741-2560/10/4/046016
54.
Patel
,
P. R.
,
Popov
,
P.
,
Caldwell
,
C. M.
,
Welle
,
E. J.
,
Egert
,
D.
,
Pettibone
,
J. R.
,
Roossien
,
D. H.
,
Becker
,
J. B.
,
Berke
,
J. D.
,
Chestek
,
C. A.
, and
Cai
,
D.
,
2020
, “
High Density Carbon Fiber Arrays for Chronic Electrophysiology, Fast Scan Cyclic Voltammetry, and Correlative Anatomy
,”
J. Neural Eng.
,
17
(
5
), p.
056029
.10.1088/1741-2552/abb1f6
55.
Yi
,
W.
,
Chen
,
C.
,
Feng
,
Z.
,
Xu
,
Y.
,
Zhou
,
C.
,
Masurkar
,
N.
,
Cavanaugh
,
J.
, and
Ming-Cheng Cheng
,
M.
,
2015
, “
A Flexible and Implantable Microelectrode Arrays Using High-Temperature Grown Vertical Carbon Nanotubes and a Biocompatible Polymer Substrate
,”
Nanotechnology
,
26
(
12
), p.
125301
.10.1088/0957-4484/26/12/125301
56.
Behabtu
,
N.
,
Young
,
C. C.
,
Tsentalovich
,
D. E.
,
Kleinerman
,
O.
,
Wang
,
X.
,
Ma
,
A. W. K.
,
Bengio
,
E. A.
, et al.,
2013
, “
Strong, Light, Multifunctional Fibers of Carbon Nanotubes With Ultrahigh Conductivity
,”
Science
,
339
(
6116
), pp.
182
186
.10.1126/science.1228061
57.
Si
,
B.
, and
Song
,
E.
,
2018
, “
Recent Advances in the Detection of Neurotransmitters
,”
Chemosensors
,
6
(
1
), p.
1
.10.3390/chemosensors6010001
58.
Zeng
,
J.
,
Xu
,
R.
,
Jiao
,
L.
,
Wang
,
Y.
,
Chen
,
L.
,
Windle
,
C. D.
,
Ding
,
X.
,
Zhang
,
Z.
,
Han
,
Q.
, and
Qu
,
L.
,
2019
, “
A 3D-Graphene Fiber Electrode Embedded With Nitrogen-Rich-Carbon-Coated ZIF-67 for the Ultrasensitive Detection of Adrenaline
,”
J. Mater. Chem. B
,
7
(
35
), pp.
5291
5295
.10.1039/C9TB01223K
59.
Zheng
,
Y.
,
2017
,
Design and Fabrication of a Highly Flexible Neural Electrode
,
Case Western Reserve University
, Cleveland, OH.
60.
Zhao
,
S.
,
Liu
,
X.
,
Xu
,
Z.
,
Ren
,
H.
,
Deng
,
B.
,
Tang
,
M.
,
Lu
,
L.
,
Fu
,
X.
,
Peng
,
H.
,
Liu
,
Z.
, and
Duan
,
X.
,
2016
, “
Graphene Encapsulated Copper Microwires as Highly MRI Compatible Neural Electrodes
,”
Nano Lett.
,
16
(
12
), pp.
7731
7738
.10.1021/acs.nanolett.6b03829
61.
Apollo
,
N. V.
,
Maturana
,
M. I.
,
Tong
,
W.
,
Nayagam
,
D. A.
,
Shivdasani
,
M. N.
,
Foroughi
,
J.
,
Wallace
,
G. G.
,
Prawer
,
S.
,
Ibbotson
,
M. R.
, and
Garrett
,
D. J.
,
2015
, “
Soft, Flexible Freestanding Neural Stimulation and Recording Electrodes Fabricated From Reduced Graphene Oxide
,”
Adv. Funct. Mater.
,
25
(
23
), pp.
3551
3559
.10.1002/adfm.201500110
62.
Cheng
,
H.
,
Hu
,
C.
,
Zhao
,
Y.
, and
Qu
,
L.
,
2014
, “
Graphene Fiber: A New Material Platform for Unique Applications
,”
NPG Asia Mater.
,
6
(
7
), pp.
e113
e113
.10.1038/am.2014.48
63.
Bartholomew
,
G. A.
,
1962
, “
Method and Apparatus for Coating Metal Strip and Wire
,”
Google Patents No.
3,019,126.
64.
Jorfi
,
M.
,
Skousen
,
J. L.
,
Weder
,
C.
, and
Capadona
,
J. R.
,
2015
, “
Progress Towards Biocompatible Intracortical Microelectrodes for Neural Interfacing Applications
,”
J. Neural Eng.
,
12
(
1
), p.
011001
.10.1088/1741-2560/12/1/011001
65.
Weltman
,
A.
,
Yoo
,
J.
, and
Meng
,
E.
,
2016
, “
Flexible, Penetrating Brain Probes Enabled by Advances in Polymer Microfabrication
,”
Micromachines (Basel)
,
7
(
10
), p.
180
.10.3390/mi7100180
66.
O'Doherty
,
J.
,
Lebedev
,
M.
,
Hanson
,
T.
,
Fitzsimmons
,
N.
, and
Nicolelis
,
M.
,
2009
, “
A Brain-Machine Interface Instructed by Direct Intracortical Microstimulation
,”
Front. Integr. Neurosci.
,
3
, p.
803
.10.3389/neuro.07.020.2009
67.
Westby
,
G. W. M.
, and
Wang
,
H.
,
1997
, “
A Floating Microwire Technique for Multichannel Chronic Neural Recording and Stimulation in the Awake Freely Moving Rat
,”
J. Neurosci. Methods
,
76
(
2
), pp.
123
133
.10.1016/S0165-0270(97)00088-5
68.
Mardani
,
R.
,
Shahmirzaee
,
H.
,
Ershadifar
,
H.
, and
Vahdani
,
M. R.
,
2017
, “
Electrodeposition of Ni32Fe48Mo20 and Ni52Fe33W15 Alloy Film on Cu Microwire From Ionic Liquid Containing Plating Bath
,”
Surf. Coat. Technol.
,
324
, pp.
281
287
.10.1016/j.surfcoat.2017.05.087
69.
Loeb
,
G. E.
,
Bak
,
M. J.
,
Salcman
,
M.
, and
Schmidt
,
E. M.
,
1977
, “
Parylene as a Chronically Stable, Reproducible Microelectrode Insulator
,”
IEEE Trans. Biomed. Eng.
,
BME-24
(
2
), pp.
121
128
.10.1109/TBME.1977.326115
70.
Kleinbach
,
E.
, and
Riede
,
T.
,
1995
, “
Coating of Solids
,”
Chem. Eng. Process.
,
34
(
3
), pp.
329
337
.10.1016/0255-2701(94)04021-4
71.
Chen
,
Y.
,
Zhang
,
J.
,
Zhou
,
J.
,
Chu
,
Y.
,
Zhou
,
B.
,
Wu
,
X.
, and
Huang
,
J.
,
2018
, “
Long-Term Stable and Tunable High-Performance Photodetectors Based on Perovskite Microwires
,”
Adv. Opt. Mater.
,
6
(
22
), p.
1800469
.10.1002/adom.201800469
72.
Salcman
,
M.
, and
Bak
,
M. J.
,
1973
, “
Design, Fabrication, and In Vivo Behavior of Chronic Recording Intracortical Microelectrodes
,”
IEEE Trans. Biomed. Eng.
,
BME-20
(
4
), pp.
253
260
.10.1109/TBME.1973.324189
73.
Palmer
,
C.
,
1978
, “
A Microwire Technique for Recording Single Neurons in Unrestrained Animals
,”
Brain Res. Bull.
,
3
(
3
), pp.
285
289
.10.1016/0361-9230(78)90129-6
74.
Kaltenbach
,
J. A.
, and
Gerstein
,
G. L.
,
1986
, “
A Rapid Method for Production of Sharp Tips on Preinsulated Microwires
,”
J. Neurosci. Methods
,
16
(
4
), pp.
283
288
.10.1016/0165-0270(86)90053-1
75.
Cheung
,
K. C.
,
Djupsund
,
K.
,
Dan
,
Y.
, and
Lee
,
L. P.
,
2003
, “
Implantable Multichannel Electrode Array Based on SOI Technology
,”
J. Microelectromech. Syst.
,
12
(
2
), pp.
179
184
.10.1109/JMEMS.2003.809962
76.
Chen
,
L.
,
Hartner
,
J. P.
,
Dong
,
T. K.
,
Li
,
A. D. R.
,
Watson
,
B. O.
, and
Shih
,
A. J.
,
2021
, “
Flexible High-Resolution Force and Dimpling Measurement System for Pia and Dura Penetration During In Vivo Microelectrode Insertion Into Rat Brain
,”
IEEE Trans. Biomed. Eng.
,
68
(
8
), pp.
2602
2612
.10.1109/TBME.2021.3070781
77.
Schmidt
,
E. M.
,
Bak
,
M. J.
, and
Christensen
,
P.
,
1995
, “
Laser Exposure of Parylene-C Insulated Microelectrodes
,”
J. Neurosci. Methods
,
62
(
1-2
), pp.
89
92
.10.1016/0165-0270(95)00060-7
78.
Budai
,
D.
, and
Molnár
,
Z.
,
2001
, “
Novel Carbon Fiber Microeletrodes for Extracellular Electrophysiology
,”
Acta Biol. Szegediensis
,
45
(
1-4
), pp.
65
73
.https://abs.bibl.uszeged.hu/index.php/abs/article/view/2187
79.
Ho
,
K. H.
, and
Newman
,
S. T.
,
2003
, “
State of the Art Electrical Discharge Machining (EDM)
,”
Int. J. Mach. Tools Manuf.
,
43
(
13
), pp.
1287
1300
.10.1016/S0890-6955(03)00162-7
80.
Kollo
,
M.
,
Racz
,
R.
,
Hanna
,
M.-E.
,
Obaid
,
A.
,
Angle
,
M. R.
,
Wray
,
W.
,
Kong
,
Y.
,
Müller
,
J.
,
Hierlemann
,
A.
,
Melosh
,
N. A.
, and
Schaefer
,
A. T.
,
2020
, “
CHIME: CMOS-Hosted In Vivo Microelectrodes for Massively Scalable Neuronal Recordings
,”
Front. Neurosci.
,
14
, p.
834
.10.3389/fnins.2020.00834
81.
Dong
,
T.
,
Chen
,
L.
, and
Shih
,
A.
,
2020
, “
Laser Sharpening of Carbon Fiber Microelectrode Arrays for Brain Recording
,”
J. Micro Nanomanuf.
,
8
(
4
), p.
041013
.10.1115/1.4049780
82.
Shah Idil
,
A.
, and
Donaldson
,
N.
,
2018
, “
The Use of Tungsten as a Chronically Implanted Material
,”
J. Neural Eng.
,
15
(
2
), p.
021006
.10.1088/1741-2552/aaa502
83.
Sharp
,
A. A.
,
Ortega
,
A. M.
,
Restrepo
,
D.
,
Curran-Everett
,
D.
, and
Gall
,
K.
,
2009
, “
In Vivo Penetration Mechanics and Mechanical Properties of Mouse Brain Tissue at Micrometer Scales
,”
IEEE Trans. Biomed. Eng.
,
56
(
1
), pp.
45
53
.10.1109/TBME.2008.2003261
84.
Chang
,
W.-T.
,
Hwang
,
I.-S.
,
Chang
,
M.-T.
,
Lin
,
C.-Y.
,
Hsu
,
W.-H.
, and
Hou
,
J.-L.
,
2012
, “
Method of Electrochemical Etching of Tungsten Tips With Controllable Profiles
,”
Rev. Sci. Instrum.
,
83
(
8
), p.
083704
.10.1063/1.4745394
85.
Hanein
,
Y.
, and
Bareket-Keren
,
L.
,
2013
, “
Carbon Nanotube-Based Multi Electrode Arrays for Neuronal Interfacing: progress and Prospects
,”
Front. Neural Circuits
,
6
, p.
122
.10.3389/fncir.2012.00122
86.
Jones
,
K. E.
,
Campbell
,
P. K.
, and
Normann
,
R. A.
,
1992
, “
A Glass/Silicon Composite Intracortical Electrode Array
,”
Ann. Biomed. Eng.
,
20
(
4
), pp.
423
437
.10.1007/BF02368134
87.
Bhandari
,
R.
,
Negi
,
S.
,
Rieth
,
L.
,
Normann
,
R. A.
, and
Solzbacher
,
F.
,
2008
, “
A Novel Method of Fabricating Convoluted Shaped Electrode Arrays for Neural and Retinal Prostheses
,”
Sens. Actuators A: Phys.
,
145–146
, pp.
123
130
.10.1016/j.sna.2007.10.072
88.
Bhandari
,
R.
,
Negi
,
S.
, and
Solzbacher
,
F.
,
2010
, “
Wafer-Scale Fabrication of Penetrating Neural Microelectrode Arrays
,”
Biomed. Microdev.
,
12
(
5
), pp.
797
807
.10.1007/s10544-010-9434-1
89.
Leber
,
M.
,
Körner
,
J.
,
Reiche
,
C. F.
,
Yin
,
M.
,
Bhandari
,
R.
,
Franklin
,
R.
,
Negi
,
S.
, and
Solzbacher
,
F.
,
2019
, “Advances in Penetrating Multichannel Microelectrodes Based on the Utah Array Platform,”
Neural Interface: Frontiers and Applications
,
X.
Zheng
, ed.,
Springer Singapore, Singapore
, pp.
1
40
.
90.
Joshi-Imre
,
A.
,
Black
,
B. J.
,
Abbott
,
J.
,
Kanneganti
,
A.
,
Rihani
,
R.
,
Chakraborty
,
B.
,
Danda
,
V. R.
, et al.,
2019
, “
Chronic Recording and Electrochemical Performance of Amorphous Silicon Carbide-Coated Utah Electrode Arrays Implanted in Rat Motor Cortex
,”
J. Neural Eng.
,
16
(
4
), p.
046006
.10.1088/1741-2552/ab1bc8
91.
Rutishauser
,
U.
,
Aflalo
,
T.
,
Rosario
,
E. R.
,
Pouratian
,
N.
, and
Andersen
,
R. A.
,
2018
, “
Single-Neuron Representation of Memory Strength and Recognition Confidence in Left Human Posterior Parietal Cortex
,”
Neuron
,
97
(
1
), pp.
209
220
.10.1016/j.neuron.2017.11.029
92.
Weiss
,
S. A.
,
Banks
,
G. P.
,
McKhann
,
G. M.
, Jr.
,
Goodman
,
R. R.
,
Emerson
,
R. G.
,
Trevelyan
,
A. J.
, and
Schevon
,
C. A.
,
2013
, “
Ictal High Frequency Oscillations Distinguish Two Types of Seizure Territories in Humans
,”
Brain
,
136
(
12
), pp.
3796
3808
.10.1093/brain/awt276
93.
Hochberg
,
L. R.
,
Serruya
,
M. D.
,
Friehs
,
G. M.
,
Mukand
,
J. A.
,
Saleh
,
M.
,
Caplan
,
A. H.
,
Branner
,
A.
,
Chen
,
D.
,
Penn
,
R. D.
, and
Donoghue
,
J. P.
,
2006
, “
Neuronal Ensemble Control of Prosthetic Devices by a Human With Tetraplegia
,”
Nature
,
442
(
7099
), pp.
164
171
.10.1038/nature04970
94.
Armenta Salas
,
M.
,
Bashford
,
L.
,
Kellis
,
S.
,
Jafari
,
M.
,
Jo
,
H.
,
Kramer
,
D.
,
Shanfield
,
K.
,
Pejsa
,
K.
,
Lee
,
B.
,
Liu
,
C. Y.
, and
Andersen
,
R. A.
,
2018
, “
Proprioceptive and Cutaneous Sensations in Humans Elicited by Intracortical Microstimulation
,”
eLife
,
7
, p.
e32904
.10.7554/eLife.32904
95.
Normann
,
R. A.
,
Greger
,
B. A.
,
House
,
P.
,
Romero
,
S. F.
,
Pelayo
,
F.
, and
Fernandez
,
E.
,
2009
, “
Toward the Development of a Cortically Based Visual Neuroprosthesis
,”
J. Neural Eng.
,
6
(
3
), p.
035001
.10.1088/1741-2560/6/3/035001
96.
George
,
J. A.
,
Page
,
D. M.
,
Davis
,
T. S.
,
Duncan
,
C. C.
,
Hutchinson
,
D. T.
,
Rieth
,
L. W.
, and
Clark
,
G. A.
,
2020
, “
Long-Term Performance of Utah Slanted Electrode Arrays and Intramuscular Electromyographic Leads Implanted Chronically in Human Arm Nerves and Muscles
,”
J. Neural Eng.
,
17
(
5
), p.
056042
.10.1088/1741-2552/abc025
97.
Abaya
,
T. V. F.
,
Diwekar
,
M.
,
Blair
,
S.
,
Tathireddy
,
P.
,
Rieth
,
L.
, and
Solzbacher
,
F.
,
2012
, “
3D Waveguide Penetrating Arrays for Optical Neural Stimulation
,”
Proceedings of International Conference on Optical MEMS and Nanophotonics
, Banff, AB, Canada, Aug. 6–9, pp.
216
217
.10.1109/OMEMS.2012.6318880
98.
Branner
,
A.
,
Stein
,
R. B.
, and
Normann
,
R. A.
,
2001
, “
Selective Stimulation of Cat Sciatic Nerve Using an Array of Varying-Length Microelectrodes
,”
J. Neurophysiol.
,
85
(
4
), pp.
1585
1594
.10.1152/jn.2001.85.4.1585
99.
Campbell
,
P. K.
,
Jones
,
K. E.
, and
Normann
,
R. A.
,
1990
, “
A 100 Electrode Intracortical Array: structural Variability
,”
Biomed. Sci. Instrum.
,
26
, pp.
161
165
.
100.
Shandhi
,
M. M. H.
,
Leber
,
M.
,
Hogan
,
A. L.
,
Warren
,
D. J.
,
Bhandari
,
R.
, and
Negi
,
S.
,
2017
, “
Reusable High Aspect Ratio 3-D Nickel Shadow Mask
,”
J. Microelectromech. Syst.
,
26
(
2
), pp.
376
384
.10.1109/JMEMS.2017.2654126
101.
Mokwa
,
W.
,
Wessling
,
B.
, and
Schnakenberg
,
U.
,
2007
, “
Sputtered Iridium Oxide for Stimulation Electrode Coatings
,” Proceedings of
29th Annual International Conference of the IEEE Engineering in Medicine and Biology Society
, Lyon, France, Aug. 22–26, pp.
6047
6050
.10.1109/IEMBS.2007.4353727
102.
Woeppel
,
K.
,
Hughes
,
C.
,
Herrera
,
A. J.
,
Eles
,
J. R.
,
Tyler-Kabara
,
E. C.
,
Gaunt
,
R. A.
,
Collinger
,
J. L.
, and
Cui
,
X. T.
,
2021
, “
Explant Analysis of Utah Electrode Arrays Implanted in Human Cortex for Brain-Computer-Interfaces
,”
Front. Bioeng. Biotechnol.
,
9
, p.
1137
.10.3389/fbioe.2021.759711
103.
Xie
,
X.
,
Rieth
,
L. W.
,
Cardwell
,
R.
,
Sharma
,
R.
,
Yoo
,
J.-M.
,
Diweka
,
M.
,
Tathireddy
,
P.
, and
Solzbacher
,
F.
,
2013
, “
Bi-Layer Encapsulation of Utah Array Based Nerual Interfaces by Atomic Layer Deposited Al2O3 and Parylene C
,” Transducers & Eurosensors XXVII: The 17th International Conference on Solid-State Sensors, Actuators and Microsystems (
TRANSDUCERS & EUROSENSORS XXVII
)
, Barcelona, Spain, June 16–20, pp.
1267
1270
.10.1109/Transducers.2013.6627006
104.
Fekete
,
Z.
,
2015
, “
Recent Advances in Silicon-Based Neural Microelectrodes and Microsystems: A Review
,”
Sens. Actuators B Chem.
,
215
, pp.
300
315
.10.1016/j.snb.2015.03.055
105.
Rapeaux
,
A. B.
, and
Constandinou
,
T. G.
,
2021
, “
Implantable Brain Machine Interfaces: First-In-Human Studies, Technology Challenges and Trends
,”
Curr. Opin. Biotechnol.
,
72
, pp.
102
111
.10.1016/j.copbio.2021.10.001
106.
Kindlundh
,
M.
,
Norlin
,
P.
, and
Hofmann
,
U. G.
,
2004
, “
A Neural Probe Process Enabling Variable Electrode Configurations
,”
Sens. Actuators B Chem.
,
102
(
1
), pp.
51
58
.10.1016/j.snb.2003.10.009
107.
Peter
,
N.
,
Maria
,
K.
,
Aliette
,
M.
,
Ken
,
Y.
, and
Ulrich
,
G. H.
,
2002
, “
A 32-Site Neural Recording Probe Fabricated by DRIE of SOI Substrates
,”
J. Micromech. Microeng.
,
12
(
4
), p.
414
.10.1088/0960-1317/12/4/312
108.
Najafi
,
K.
,
Wise
,
K. D.
, and
Mochizuki
,
T.
,
1985
, “
A High-Yield IC-Compatible Multichannel Recording Array
,”
IEEE Trans. Electron Dev.
,
32
(
7
), pp.
1206
1211
.10.1109/T-ED.1985.22102
109.
Fiáth
,
R.
,
Meszéna
,
D.
,
Somogyvári
,
Z.
,
Boda
,
M.
,
Barthó
,
P.
,
Ruther
,
P.
, and
Ulbert
,
I.
,
2021
, “
Recording Site Placement on Planar Silicon-Based Probes Affects Signal Quality in Acute Neuronal Recordings
,”
Sci. Rep.
,
11
(
1
), p.
2028
.10.1038/s41598-021-81127-5
110.
Wise
,
K. D.
, and
Najafi
,
K.
,
1991
, “
Microfabrication Techniques for Integrated Sensors and Microsystems
,”
Science
,
254
(
5036
), pp.
1335
1342
.10.1126/science.1962192
111.
Vetter
,
R. J.
,
Williams
,
J. C.
,
Hetke
,
J. F.
,
Nunamaker
,
E. A.
, and
Kipke
,
D. R.
,
2004
, “
Chronic Neural Recording Using Silicon-Substrate Microelectrode Arrays Implanted in Cerebral Cortex
,”
IEEE Trans. Biomed. Eng.
,
51
(
6
), pp.
896
904
.10.1109/TBME.2004.826680
112.
Abidian
,
M. R.
, and
Martin
,
D. C.
,
2008
, “
Experimental and Theoretical Characterization of Implantable Neural Microelectrodes Modified With Conducting Polymer Nanotubes
,”
Biomaterials
,
29
(
9
), pp.
1273
1283
.10.1016/j.biomaterials.2007.11.022
113.
Gabay
,
T.
,
Ben-David
,
M.
,
Kalifa
,
I.
,
Sorkin
,
R.
,
Abrams
,
Z. e. R.
,
Ben-Jacob
,
E.
, and
Hanein
,
Y.
,
2007
, “
Electro-Chemical and Biological Properties of Carbon Nanotube Based Multi-Electrode Arrays
,”
Nanotechnology
,
18
(
3
), p.
035201
.10.1088/0957-4484/18/3/035201
114.
Shobe
,
J. L.
,
Claar
,
L. D.
,
Parhami
,
S.
,
Bakhurin
,
K. I.
, and
Masmanidis
,
S. C.
,
2015
, “
Brain Activity Mapping at Multiple Scales With Silicon Microprobes Containing 1,024 Electrodes
,”
J. Neurophysiol.
,
114
(
3
), pp.
2043
2052
.10.1152/jn.00464.2015
115.
Jun
,
J. J.
,
Steinmetz
,
N. A.
,
Siegle
,
J. H.
,
Denman
,
D. J.
,
Bauza
,
M.
,
Barbarits
,
B.
,
Lee
,
A. K.
, et al.,
2017
, “
Fully Integrated Silicon Probes for High-Density Recording of Neural Activity
,”
Nature
,
551
(
7679
), pp.
232
236
.10.1038/nature24636
116.
Steinmetz
,
N. A.
,
Aydin
,
C.
,
Lebedeva
,
A.
,
Okun
,
M.
,
Pachitariu
,
M.
,
Bauza
,
M.
,
Beau
,
M.
, et al.,
2021
, “
Neuropixels 2.0: A Miniaturized High-Density Probe for Stable, Long-Term Brain Recordings
,”
Science
,
372
(
6539
), p.
eabf4588
.10.1126/science.abf4588
117.
Raducanu
,
B. C.
,
Yazicioglu
,
R. F.
,
Lopez
,
C. M.
,
Ballini
,
M.
,
Putzeys
,
J.
,
Wang
,
S.
,
Andrei
,
A.
, et al.,
2017
, “
Time Multiplexed Active Neural Probe With 1356 Parallel Recording Sites
,”
Sensors
,
17
(
10
), p.
2388
.10.3390/s17102388
118.
Mora Lopez
,
C.
,
Putzeys
,
J.
,
Raducanu
,
B. C.
,
Ballini
,
M.
,
Wang
,
S.
,
Andrei
,
A.
,
Rochus
,
V.
, et al.,
2017
, “
A Neural Probe With Up to 966 Electrodes and Up to 384 Configurable Channels in 0.13 μm SOI CMOS
,”
IEEE Trans. Biomed. Circuits Syst.
,
11
(
3
), pp.
510
522
.10.1109/TBCAS.2016.2646901
119.
Angotzi
,
G. N.
,
Boi
,
F.
,
Lecomte
,
A.
,
Miele
,
E.
,
Malerba
,
M.
,
Zucca
,
S.
,
Casile
,
A.
, and
Berdondini
,
L.
,
2019
, “
SiNAPS: An Implantable Active Pixel Sensor CMOS-Probe for Simultaneous Large-Scale Neural Recordings
,”
Biosens. Bioelectron.
,
126
, pp.
355
364
.10.1016/j.bios.2018.10.032
120.
McGlynn
,
E.
,
Nabaei
,
V.
,
Ren
,
E.
,
Galeote-Checa
,
G.
,
Das
,
R.
,
Curia
,
G.
, and
Heidari
,
H.
,
2021
, “
The Future of Neuroscience: Flexible and Wireless Implantable Neural Electronics
,”
Adv. Sci.
,
8
(
14
), p.
2102287
.10.1002/advs.202102287
121.
Mercanzini
,
A.
,
Cheung
,
K.
,
Buhl
,
D. L.
,
Boers
,
M.
,
Maillard
,
A.
,
Colin
,
P.
,
Bensadoun
,
J.-C.
,
Bertsch
,
A.
, and
Renaud
,
P.
,
2008
, “
Demonstration of Cortical Recording Using Novel Flexible Polymer Neural Probes
,”
Sens. Actuators A Phys.
,
143
(
1
), pp.
90
96
.10.1016/j.sna.2007.07.027
122.
Musk
,
E.
,
Neuralink
,
2019
, “
An Integrated Brain-Machine Interface Platform With Thousands of Channels
,”
J. Med. Internet Res.
,
21
(
10
), p.
e16194
.10.2196/16194
123.
Cointe
,
C.
,
Laborde
,
A.
,
Nowak
,
L. G.
,
Arvanitis
,
D. N.
,
Bourrier
,
D.
,
Bergaud
,
C.
, and
Maziz
,
A.
,
2022
, “
Scalable Batch Fabrication of Ultrathin Flexible Neural Probes Using a Bioresorbable Silk Layer
,”
Microsyst. Nanoeng.
,
8
(
1
), p.
21
.10.1038/s41378-022-00353-7
124.
Ziegler
,
D.
,
Suzuki
,
T.
, and
Takeuchi
,
S.
,
2006
, “
Fabrication of Flexible Neural Probes With Built-In Microfluidic Channels by Thermal Bonding of Parylene
,”
J. Microelectromech. Syst.
,
15
(
6
), pp.
1477
1482
.10.1109/JMEMS.2006.879681
125.
Altuna
,
A.
,
Berganzo
,
J.
, and
Fernández
,
L. J.
,
2015
, “
Polymer SU-8-Based Microprobes for Neural Recording and Drug Delivery
,”
Front. Mater.
,
2
, p.
47
.10.3389/fmats.2015.00047
126.
Altuna
,
A.
,
Menendez de la Prida
,
L.
,
Bellistri
,
E.
,
Gabriel
,
G.
,
Guimerá
,
A.
,
Berganzo
,
J.
,
Villa
,
R.
, and
Fernández
,
L. J.
,
2012
, “
SU-8 Based Microprobes With Integrated Planar Electrodes for Enhanced Neural Depth Recording
,”
Biosens. Bioelectron.
,
37
(
1
), pp.
1
5
.10.1016/j.bios.2012.03.039
127.
Kim
,
J.-M.
,
Im
,
C.
, and
Lee
,
W. R.
,
2017
, “
Plateau-Shaped Flexible Polymer Microelectrode Array for Neural Recording
,”
Polymers
,
9
(
12
), p.
690
.10.3390/polym9120690
128.
Zhu
,
H.
,
He
,
J.
, and
Kim
,
B.
,
2004
, “
High-Yield Benzocyclobutene(BCB) Based Neural Implants for Simultaneous Intra- and Extracortical Recording in Rats
,”
Conference of the IEEE Engineering in Medicine and Biology Society
, San Francisco, CA, Sept. 1–5, pp.
4341
4344
.10.1109/IEMBS.2004.1404208
129.
Zhu
,
H.
,
He
,
J.
, and
Kim
,
B. C.
,
2007
, “
Processing and Characterization of Dry-Etch Benzocyclobutene as Substrate and Packaging Material for Neural Sensors
,”
IEEE Trans. Compon. Packag. Technol.
,
30
(
3
), pp.
390
396
.10.1109/TCAPT.2007.900054
130.
Wei
,
L.
,
Lakhtakia
,
A.
,
Roopnariane
,
A. P.
, and
Ritty
,
T. M.
,
2010
, “
Human Fibroblast Attachment on Fibrous parylene-C Thin-Film Substrates
,”
Mater. Sci. Eng.: C
,
30
(
8
), pp.
1252
1259
.10.1016/j.msec.2010.07.003
131.
Kahouli
,
A.
,
2012
, “
Effect of Film Thickness on Structural, Morphology, Dielectric and Electrical Properties of Parylene C Films
,”
J. Appl. Phys.
,
112
(
6
), p.
064103
.10.1063/1.4752022
132.
Hassler
,
C.
,
Boretius
,
T.
, and
Stieglitz
,
T.
,
2011
, “
Erratum: Polymers for Neural Implants
,”
J. Polym. Sci. Part B Polym. Phys.
,
49
(
3
), pp.
255
255
.10.1002/polb.22189
133.
Stieglitz
,
T.
,
Beutel
,
H. R.
,
Schuettler
,
M.
, and
Meyer
,
J. U.
,
2000
, “
Micromachined, Polyimide-Based Devices for Flexible Neural Interfaces
,”
Biomed. Microdev.
,
2
(
4
), pp.
283
294
.10.1023/A:1009955222114
134.
Zhou
,
T.
,
Hong
,
G.
,
Fu
,
T.-M.
,
Yang
,
X.
,
Schuhmann
,
T. G.
,
Viveros
,
R. D.
, and
Lieber
,
C. M.
,
2017
, “
Syringe-Injectable Mesh Electronics Integrate Seamlessly With Minimal Chronic Immune Response in the Brain
,”
Proc. Natl. Acad. Sci.
,
114
(
23
), pp.
5894
5899
.10.1073/pnas.1705509114
135.
Park
,
A. H.
,
Lee
,
S. H.
,
Lee
,
C.
,
Kim
,
J.
,
Lee
,
H. E.
,
Paik
,
S.-B.
,
Lee
,
K. J.
, and
Kim
,
D.
,
2016
, “
Optogenetic Mapping of Functional Connectivity in Freely Moving Mice Via Insertable Wrapping Electrode Array Beneath the Skull
,”
ACS Nano
,
10
(
2
), pp.
2791
2802
.10.1021/acsnano.5b07889
136.
Shin
,
H.
,
Son
,
Y.
,
Chae
,
U.
,
Kim
,
J.
,
Choi
,
N.
,
Lee
,
H. J.
,
Woo
,
J.
,
Cho
,
Y.
,
Yang
,
S. H.
,
Lee
,
C. J.
, and
Cho
,
I.-J.
,
2019
, “
Multifunctional Multi-Shank Neural Probe for Investigating and Modulating Long-Range Neural Circuits In Vivo
,”
Nat. Commun.
,
10
(
1
), p.
3777
.10.1038/s41467-019-11628-5
137.
Wang
,
Y.
,
Lee
,
S.-H.
,
Shih
,
Y.-Y. I.
, and
Lee
,
Y.-S.
,
2022
, “
Design and Fabrication of MRI-Compatible and Flexible Neural Microprobes for Deep Brain Stimulation and Neurological Treatment Applications
,”
ASME
Paper No. MSEC2022-85832.10.1115/MSEC2022-85832
138.
Ortigoza-Diaz
,
J.
,
Scholten
,
K.
,
Larson
,
C.
,
Cobo
,
A.
,
Hudson
,
T.
,
Yoo
,
J.
,
Baldwin
,
A.
,
Weltman Hirschberg
,
A.
, and
Meng
,
E.
,
2018
, “
Techniques and Considerations in the Microfabrication of Parylene C Microelectromechanical Systems
,”
Micromachines
,
9
(
9
), p.
422
.10.3390/mi9090422
139.
Atta
,
A.
,
2013
, “
Modification of the Surface Properties of Polyimide Films Using Oxygen Plasma Exposure
,” Arab J. Nucl. Sci. Appl., 46(5), pp. 115–123.
140.
Nguyen
,
T.
, and
Lee
,
N.-E.
,
2007
, “
Deep Reactive Ion Etching of Polyimide for Microfluidic Applications
,”
J. Korean Phys. Soc.
,
51
(
3
), pp.
984
988
.10.3938/jkps.51.984
141.
Christiaens
,
W.
,
Loeher
,
T.
,
Pahl
,
B.
,
Feil
,
M.
,
Vandevelde
,
B.
, and
Vanfleteren
,
J.
,
2008
, “
Embedding and Assembly of Ultrathin Chips in Multilayer Flex Boards
,”
Circuit World
,
34
(
3
), pp.
3
8
.10.1108/03056120810896209
142.
Chen
,
Y.
,
Mao
,
H.
,
Tan
,
Q.
,
Xue
,
C.
,
Ou
,
W.
,
Liu
,
J.
, and
Chen
,
D.
,
2014
, “
Fabrication of Polyimide Sacrificial Layers With Inclined Sidewalls Based on Reactive Ion Etching
,”
AIP Adv.
,
4
(
3
), p.
031328
.10.1063/1.4868379
143.
Bagolini
,
A.
,
Pakula
,
L.
,
Scholtes
,
T. L. M.
,
Pham
,
H. T. M.
,
French
,
P. J.
, and
Sarro
,
P. M.
,
2002
, “
Polyimide Sacrificial Layer and Novel Materials for Post-Processing Surface Micromachining
,”
J. Micromech. Microeng.
,
12
(
4
), pp.
385
389
.10.1088/0960-1317/12/4/306
144.
Zawierta
,
M.
,
Martyniuk
,
M.
,
Jeffery
,
R. D.
,
Putrino
,
G.
,
Keating
,
A.
,
Silva
,
K. K. M. B. D.
, and
Faraone
,
L.
,
2017
, “
Control of Sidewall Profile in Dry Plasma Etching of Polyimide
,”
J. Microelectromech. Syst.
,
26
(
3
), pp.
593
600
.10.1109/JMEMS.2017.2681106
145.
A. Fomani
,
A.
, and
Mansour
,
R. R.
,
2011
, “
Fabrication and Characterization of the Flexible Neural Microprobes With Improved Structural Design
,”
Sens. Actuators A Phys.
,
168
(
2
), pp.
233
241
.10.1016/j.sna.2011.04.024
146.
Fomani
,
A. A.
, and
Mansour
,
R. R.
,
2010
, “
Flexible Neural Microelectrode Arrays Reinforced With Embedded Metallic Micro-Needles
,”
Proceedings of SENSORS
,
IEEE
, Waikoloa, HI, Nov. 1–4, pp.
1601
1604
.10.1109/ICSENS.2010.5690280
147.
Lai
,
H. Y.
,
Liao
,
L. D.
,
Lin
,
C. T.
,
Hsu
,
J. H.
,
He
,
X.
,
Chen
,
Y. Y.
,
Chang
,
J. Y.
,
Chen
,
H. F.
,
Tsang
,
S.
, and
Shih
,
Y. Y.
,
2012
, “
Design, Simulation and Experimental Validation of a Novel Flexible Neural Probe for Deep Brain Stimulation and Multichannel Recording
,”
J. Neural Eng.
,
9
(
3
), p.
036001
.10.1088/1741-2560/9/3/036001
148.
Seung-Joon
,
P.
,
Yonghwa
,
P.
, and
Dong-Il Dan
,
C.
,
2003
, “
Roughened Polysilicon for Low Impedance Microelectrodes in Neural Probes
,”
J. Micromech. Microeng.
,
13
(
3
), p.
373
.10.1088/0960-1317/13/3/304
149.
de Haro
,
C.
,
Mas
,
R.
,
Abadal
,
G.
,
Muñoz
,
J.
,
Perez-Murano
,
F.
, and
Domı́nguez
,
C.
,
2002
, “
Electrochemical Platinum Coatings for Improving Performance of Implantable Microelectrode Arrays
,”
Biomaterials
,
23
(
23
), pp.
4515
4521
.10.1016/S0142-9612(02)00195-3
150.
Heim
,
M.
,
Yvert
,
B.
, and
Kuhn
,
A.
,
2012
, “
Nanostructuration Strategies to Enhance Microelectrode Array (MEA) Performance for Neuronal Recording and Stimulation
,”
J. Physiol. Paris
,
106
(
3-4
), pp.
137
145
.10.1016/j.jphysparis.2011.10.001
151.
Bianchi
,
M.
,
De Salvo
,
A.
,
Asplund
,
M.
,
Carli
,
S.
,
Di Lauro
,
M.
,
Schulze-Bonhage
,
A.
,
Stieglitz
,
T.
,
Fadiga
,
L.
, and
Biscarini
,
F.
,
2022
, “
Poly(3,4-Ethylenedioxythiophene)-Based Neural Interfaces for Recording and Stimulation: Fundamental Aspects and In Vivo Applications
,”
Adv. Sci.
,
9
(
12
), p.
2104701
.10.1002/advs.202104701
152.
Kokubo
,
N.
,
Arake
,
M.
,
Yamagishi
,
K.
,
Morimoto
,
Y.
,
Takeoka
,
S.
,
Ohta
,
H.
, and
Fujie
,
T.
,
2019
, “
Inkjet-Printed Neural Electrodes With Mechanically Gradient Structure
,”
ACS Appl. Bio Mater.
,
2
(
1
), pp.
20
26
.10.1021/acsabm.8b00574
153.
Yuk
,
H.
,
Lu
,
B.
,
Lin
,
S.
,
Qu
,
K.
,
Xu
,
J.
,
Luo
,
J.
, and
Zhao
,
X.
,
2020
, “
3D Printing of Conducting Polymers
,”
Nat. Commun.
,
11
(
1
), p.
1604
.10.1038/s41467-020-15316-7
154.
Dong
,
R.
,
Wang
,
L.
,
Hang
,
C.
,
Chen
,
Z.
,
Liu
,
X.
,
Zhong
,
L.
,
Qi
,
J.
,
Huang
,
Y.
,
Liu
,
S.
,
Wang
,
L.
,
Lu
,
Y.
, and
Jiang
,
X.
,
2021
, “
Printed Stretchable Liquid Metal Electrode Arrays for In Vivo Neural Recording
,”
Small
,
17
(
14
), p.
2006612
.10.1002/smll.202006612
155.
Li
,
J.
,
Liu
,
Y.
,
Yuan
,
L.
,
Zhang
,
B.
,
Bishop
,
E. S.
,
Wang
,
K.
,
Tang
,
J.
, et al.,
2022
, “
A Tissue-Like Neurotransmitter Sensor for the Brain and Gut
,”
Nature
,
606
(
7912
), pp.
94
101
.10.1038/s41586-022-04615-2
156.
Yamanoi
,
K.
,
Murata
,
T.
,
Yanagida
,
T.
,
Fujimoto
,
Y.
,
Empizo
,
M. J. F.
,
Iwano
,
K.
,
Iwasa
,
Y.
,
Arita
,
R.
,
Minami
,
Y.
, and
Arikawa
,
Y.
,
2015
, “
Scintillation and Optical Properties of Ce-Doped Fluoride Glass Samples With Different Ce Concentrations
,”
Sens. Mater.
,
27
(
3
), pp.
229
235
.https://sensors.myugroup.co.jp/sm_pdf/SM1060.pdf
157.
Zhao
,
Z.
,
Kim
,
E.
,
Luo
,
H.
,
Zhang
,
J.
, and
Xu
,
Y.
,
2018
, “
Flexible Deep Brain Neural Probes Based on a Parylene Tube Structure
,”
J. Micromech. Microeng.
,
28
(
1
), p.
015012
.10.1088/1361-6439/aa9d61
158.
Goshi
,
N.
,
Castagnola
,
E.
,
Vomero
,
M.
,
Gueli
,
C.
,
Cea
,
C.
,
Zucchini
,
E.
,
Bjanes
,
D.
, et al.,
2018
, “
Glassy Carbon MEMS for Novel Origami-Styled 3D Integrated Intracortical and Epicortical Neural Probes
,”
J. Micromech. Microeng.
,
28
(
6
), p.
065009
.10.1088/1361-6439/aab061
159.
Sim
,
K.
,
Rao
,
Z.
,
Li
,
Y.
,
Yang
,
D.
, and
Yu
,
C.
,
2018
, “
Curvy Surface Conformal Ultra-Thin Transfer Printed Si Optoelectronic Penetrating Microprobe Arrays
,”
Npj Flexible Electron.
,
2
(
1
), p.
2
.10.1038/s41528-017-0015-8
160.
Xie
,
C.
,
Liu
,
J.
,
Fu
,
T.-M.
,
Dai
,
X.
,
Zhou
,
W.
, and
Lieber
,
C. M.
,
2015
, “
Three-Dimensional Macroporous Nanoelectronic Networks as Minimally Invasive Brain Probes
,”
Nat. Mater.
,
14
(
12
), pp.
1286
1292
.10.1038/nmat4427
161.
Hong
,
G.
,
Fu
,
T.-M.
,
Zhou
,
T.
,
Schuhmann
,
T. G.
,
Huang
,
J.
, and
Lieber
,
C. M.
,
2015
, “
Syringe Injectable Electronics: Precise Targeted Delivery With Quantitative Input/Output Connectivity
,”
Nano Lett.
,
15
(
10
), pp.
6979
6984
.10.1021/acs.nanolett.5b02987
162.
Moxon
,
K. A.
,
Kalkhoran
,
N. M.
,
Markert
,
M.
,
Sambito
,
M. A.
,
McKenzie
,
J. L.
, and
Webster
,
J. T.
,
2004
, “
Nanostructured Surface Modification of Ceramic-Based Microelectrodes to Enhance Biocompatibility for a Direct Brain-Machine Interface
,”
IEEE Trans. Biomed. Eng.
,
51
(
6
), pp.
881
889
.10.1109/TBME.2004.827465
163.
Bérces
,
Z.
,
Tóth
,
K.
,
Márton
,
G.
,
Pál
,
I.
,
Kováts-Megyesi
,
B.
,
Fekete
,
Z.
,
Ulbert
,
I.
, and
Pongrácz
,
A.
,
2016
, “
Neurobiochemical Changes in the Vicinity of a Nanostructured Neural Implant
,”
Sci. Rep.
,
6
(
1
), p.
35944
.10.1038/srep35944
164.
Ereifej
,
E. S.
,
Smith
,
C. S.
,
Meade
,
S. M.
,
Chen
,
K.
,
Feng
,
H.
, and
Capadona
,
J. R.
,
2018
, “
The Neuroinflammatory Response to Nanopatterning Parallel Grooves Into the Surface Structure of Intracortical Microelectrodes
,”
Adv. Funct. Mater.
,
28
(
12
), p.
1704420
.10.1002/adfm.201704420
165.
Kim
,
C.
,
Jeong
,
J.
, and
Kim
,
S. J.
,
2019
, “
Recent Progress on Non-Conventional Microfabricated Probes for the Chronic Recording of Cortical Neural Activity
,”
Sensors
,
19
(
5
), p.
1069
.10.3390/s19051069
166.
McNaughton
,
B. L.
,
O'Keefe
,
J.
, and
Barnes
,
C. A.
,
1983
, “
The Stereotrode: A New Technique for Simultaneous Isolation of Several Single Units in the Central Nervous System From Multiple Unit Records
,”
J. Neurosci. Methods
,
8
(
4
), pp.
391
397
.10.1016/0165-0270(83)90097-3
167.
Sun
,
C.
,
Cao
,
Y.
,
Huang
,
J.
,
Huang
,
K.
,
Lu
,
Y.
, and
Zhong
,
C.
,
2022
, “
Low-Cost and Easy-Fabrication Lightweight Drivable Electrode Array for Multiple-Regions Electrophysiological Recording in Free-Moving Mice
,”
J. Neural Eng.
,
19
(
1
), p.
016003
.10.1088/1741-2552/ac494e
168.
Ferguson
,
J. E.
,
Boldt
,
C.
, and
Redish
,
A. D.
,
2009
, “
Creating Low-Impedance Tetrodes by Electroplating With Additives
,”
Sens. Actuators A Phys.
,
156
(
2
), pp.
388
393
.10.1016/j.sna.2009.10.001
169.
Nicolelis
,
M. A. L.
,
Dimitrov
,
D.
,
Carmena
,
J. M.
,
Crist
,
R.
,
Lehew
,
G.
,
Kralik
,
J. D.
, and
Wise
,
S. P.
,
2003
, “
Chronic, Multisite, Multielectrode Recordings in Macaque Monkeys
,”
Proc. Natl. Acad. Sci.
,
100
(
19
), pp.
11041
11046
.10.1073/pnas.1934665100
170.
Patel
,
P. R.
,
Na
,
K.
,
Zhang
,
H.
,
Kozai
,
T. D.
,
Kotov
,
N. A.
,
Yoon
,
E.
, and
Chestek
,
C. A.
,
2015
, “
Insertion of Linear 8.4 μm Diameter 16 Channel Carbon Fiber Electrode Arrays for Single Unit Recordings
,”
J. Neural Eng.
,
12
(
4
), p.
046009
.10.1088/1741-2560/12/4/046009
171.
Barz
,
F.
,
Livi
,
A.
,
Lanzilotto
,
M.
,
Maranesi
,
M.
,
Bonini
,
L.
,
Paul
,
O.
, and
Ruther
,
P.
,
2017
, “
Versatile, Modular 3D Microelectrode Arrays for Neuronal Ensemble Recordings: From Design to Fabrication, Assembly, and Functional Validation in Non-Human Primates
,”
J. Neural Eng.
,
14
(
3
), p.
036010
.10.1088/1741-2552/aa5a90
172.
Liao
,
Y. F.
,
Tsai
,
M. L.
,
Yen
,
C. T.
, and
Cheng
,
C. H.
,
2011
, “
A Simple Method for Fabricating Microwire Tetrode With Sufficient Rigidity and Integrity Without a Heat-Fusing Process
,”
J. Neurosci. Methods
,
195
(
2
), pp.
211
215
.10.1016/j.jneumeth.2010.12.017
173.
França
,
A. S. C.
,
van Hulten
,
J. A.
, and
Cohen
,
M. X.
,
2020
, “
Low-Cost and Versatile Electrodes for Extracellular Chronic Recordings in Rodents
,”
Heliyon
,
6
(
9
), p.
e04867
.10.1016/j.heliyon.2020.e04867
174.
Thelin
,
J.
,
Jörntell
,
H.
,
Psouni
,
E.
,
Garwicz
,
M.
,
Schouenborg
,
J.
,
Danielsen
,
N.
, and
Linsmeier
,
C. E.
,
2011
, “
Implant Size and Fixation Mode Strongly Influence Tissue Reactions in the CNS
,”
PLoS One
,
6
(
1
), p.
e16267
.10.1371/journal.pone.0016267
175.
Barz
,
F.
,
Paul
,
O.
, and
Ruther
,
P.
,
2014
, “
Modular Assembly Concept for 3D Neural Probe Prototypes Offering High Freedom of Design and Alignment Precision
,”
36th Proceedings of Annual International Conference of the IEEE Engineering in Medicine and Biology Society
, Chicago, IL, Aug. 26–30, pp.
3977
3980
.10.1109/EMBC.2014.6944495
176.
Lancashire
,
H. T.
,
Habibollahi
,
M.
,
Jiang
,
D.
, and
Demosthenous
,
A.
,
2021
, “
Evaluation of Commercial Connectors for Active Neural Implants
,” Proceedings of 10th International IEEE/EMBS Conference on Neural Engineering (
NER
), Italy, May 4-6, pp.
973
976
.10.1109/NER49283.2021.9441072
177.
Cheng
,
M.-Y.
,
Yao
,
L.
,
Tan
,
K. L.
,
Lim
,
R.
,
Li
,
P.
, and
Chen
,
W.
,
2014
, “
3D Probe Array Integrated With a Front-End 100-Channel Neural Recording ASIC
,”
J. Micromech. Microeng.
,
24
(
12
), p.
125010
.10.1088/0960-1317/24/12/125010
178.
González
,
C.
, and
Rodrı́guez
,
M.
,
1997
, “
A Flexible Perforated Microelectrode Array Probe for Action Potential Recording in Nerve and Muscle Tissues
,”
J. Neurosci. Methods
,
72
(
2
), pp.
189
195
.10.1016/S0165-0270(96)02202-9
179.
Reikersdorfer
,
K. N.
,
Stacy
,
A. K.
,
Bressler
,
D. A.
,
Hayashi
,
L. S.
,
Hengen
,
K. B.
, and
Van Hooser
,
S. D.
,
2021
, “
Construction and Implementation of Carbon Fiber Microelectrode Arrays for Chronic and Acute In Vivo Recordings
,”
J. Vis. Exp.
, (
174
), p.
e62760
.10.3791/62760
180.
Otto
,
S.
,
Kaletta
,
U.
,
Bier
,
F. F.
,
Wenger
,
C.
, and
Hölzel
,
R.
,
2014
, “
Dielectrophoretic Immobilisation of Antibodies on Microelectrode Arrays
,”
Lab Chip
,
14
(
5
), pp.
998
1004
.10.1039/c3lc51190a
181.
Maynard
,
E. M.
,
Fernandez
,
E.
, and
Normann
,
R. A.
,
2000
, “
A Technique to Prevent Dural Adhesions to Chronically Implanted Microelectrode Arrays
,”
J. Neurosci. Methods
,
97
(
2
), pp.
93
101
.10.1016/S0165-0270(00)00159-X
182.
Pothof
,
F.
,
Bonini
,
L.
,
Lanzilotto
,
M.
,
Livi
,
A.
,
Fogassi
,
L.
,
Orban
,
G. A.
,
Paul
,
O.
, and
Ruther
,
P.
,
2016
, “
Chronic Neural Probe for Simultaneous Recording of Single-Unit, Multi-Unit, and Local Field Potential Activity From Multiple Brain Sites
,”
J. Neural Eng.
,
13
(
4
), p.
046006
.10.1088/1741-2560/13/4/046006
183.
Shin
,
H.
,
Jeong
,
S.
,
Lee
,
J.-H.
,
Sun
,
W.
,
Choi
,
N.
, and
Cho
,
I.-J.
,
2021
, “
3D High-Density Microelectrode Array With Optical Stimulation and Drug Delivery for Investigating Neural Circuit Dynamics
,”
Nat. Commun.
,
12
(
1
), p.
492
.10.1038/s41467-020-20763-3
184.
Chatterjee
,
S.
,
Sakorikar
,
T.
,
Bs
,
A.
,
Joshi
,
R. K.
,
Sikaria
,
A.
,
Jayachandra
,
M. V. V.
, and
Pandya
,
H. J.
,
2022
, “
A Flexible Implantable Microelectrode Array for Recording Electrocorticography Signals From Rodents
,”
Biomed. Microdev.
,
24
(
4
), p.
31
.10.1007/s10544-022-00632-0
185.
Kim
,
T.
,
Troyk
,
P. R.
, and
Bak
,
M.
,
2006
, “
Active Floating Micro Electrode Arrays (AFMA)
,”
Proceedings of International Conference of the IEEE Engineering in Medicine and Biology Society
, New York, Aug. 30–Sept. 3, pp.
2807
2810
.10.1109/IEMBS.2006.259981
186.
Du
,
J.
,
Roukes
,
M. L.
, and
Masmanidis
,
S. C.
,
2009
, “
Dual-Side and Three-Dimensional Microelectrode Arrays Fabricated From Ultra-Thin Silicon Substrates
,”
J. Micromech. Microeng.
,
19
(
7
), p.
075008
.10.1088/0960-1317/19/7/075008
187.
Khalifa
,
A.
,
Gao
,
Z.
,
Bermak
,
A.
,
Wang
,
Y.
, and
Hang Chan
,
L. L.
,
2015
, “
A Novel Method for the Fabrication of a High-Density Carbon Nanotube Microelectrode Array
,”
Sensing Bio-Sensing Res.
,
5
, pp.
1
7
.10.1016/j.sbsr.2015.04.001
188.
Sariev
,
A.
,
Chung
,
J.
,
Jung
,
D.
,
Sharif
,
F.
,
Lee
,
J. Y.
,
Kim
,
S.
, and
Royer
,
S.
,
2017
, “
Implantation of Chronic Silicon Probes and Recording of Hippocampal Place Cells in an Enriched Treadmill Apparatus
,”
J. Vis. Exp.
,
128
, p. e56438.10.3791/56438
189.
Hoogerwerf
,
A. C.
, and
Wise
,
K. D.
,
1994
, “
A Three-Dimensional Microelectrode Array for Chronic Neural Recording
,”
IEEE Trans. Biomed. Eng.
,
41
(
12
), pp.
1136
1146
.10.1109/10.335862
190.
Carter
,
M.
, and
Shieh
,
J.
,
2015
, “
Chapter 1 - Whole-Brain Imaging
,”
Guide to Research Techniques in Neuroscience
,
M.
Carter
, and
J.
Shieh
, eds., 2nd ed.,
Academic Press
,
San Diego
, CA, pp.
1
38
.
191.
Ausra
,
J.
,
Munger
,
S. J.
,
Azami
,
A.
,
Burton
,
A.
,
Peralta
,
R.
,
Miller
,
J. E.
, and
Gutruf
,
P.
,
2021
, “
Wireless Battery Free Fully Implantable Multimodal Recording and Neuromodulation Tools for Songbirds
,”
Nat. Commun.
,
12
(
1
), p.
1968
.10.1038/s41467-021-22138-8
192.
Burton
,
A.
,
Obaid
,
S. N.
,
Vázquez-Guardado
,
A.
,
Schmit
,
M. B.
,
Stuart
,
T.
,
Cai
,
L.
,
Chen
,
Z.
, et al.,
2020
, “
Wireless, Battery-Free Subdermally Implantable Photometry Systems for Chronic Recording of Neural Dynamics
,”
Proc. Natl. Acad. Sci.
,
117
(
6
), pp.
2835
2845
.10.1073/pnas.1920073117
You do not currently have access to this content.