Various ways of fabricating a three-dimensional (3D) component in a single-layer exposure using spatial variation of exposure dose have been presented in the literature. While some of them are based on dynamic mask process, more recently, a process based on varying intensity of a scanning Gaussian laser beam termed as “bulk lithography” has been proposed. In bulk lithography, the entire varying depth 3D microstructure gets fabricated because of spatial variation of intensity of laser imposed at every point in single layer scan. For the bulk lithography process, this paper first presents experimental characterization of unconstrained depth photopolymerization of resin upon exposure to Gaussian laser beam. Experimental characterization carried out for two resins systems: namely 1,6 hexane diol-diacrylate (HDDA) and trimethylolpropane triacrylate (TMPTA), over relatively wider range of Ar+ laser exposure dose and time, show behavior well beyond Beer–Lambert law. A unified empirical model is proposed to represent the nondimensional depth variation with respect to the time and energy of exposure for both resins. Finally, using these models, successful fabrication of several microstructures including micro-Fresnel lens, textured curved surface, otherwise difficult or impossible to fabricate, is demonstrated. Several advantages of the bulk lithography as compared to other similar processes in the literature are highlighted.

References

References
1.
Bertsch
,
A.
,
Berhard
,
P.
, and
Renaud
,
P.
,
2001
, “
Microstereolithography: Concepts and Applications
,”
8th International Conference on Emerging Technologies and Factory Automation
, Antibes Juan Les Pins, France, Oct. 15–18, IEEE, New York, NY, pp.
289
298
.
2.
Gandhi
,
P. S.
, and
Deshmukh
S.
,
2009
, “
A 2D Optomechanical Focused Laser Spot Scanner: Analysis and Experimental Results for Microstereolithography
,”
J. Micromech. Microeng.
,
20
, pp.
1
11
.10.1088/0960-1317/20/1/015035
3.
Varadan
,
V. K.
,
Jiang
X.
, and
Varadan
V. V.
,
2001
,
Microstereolithography and Other Fabrication Techniques for 3D MEMS
,
Wiley
,
New York, NY
, pp.
112
138
.
4.
Corcione
,
C. E.
,
Greco
,
A.
, and
Maffezzoli
,
A.
,
2004
, “
Photopolymerization Kinetics of an Epoxy-Based Resin for Stereolithography
,”
J. Appl. Polym. Sci.
,
92
, pp.
3484
3491
.10.1002/app.20347
5.
Sun
,
C.
,
Fang
,
N.
,
Wu
,
D. M.
, and
Zhang
,
X.
,
2005
, “
Projection Micro-Stereolithography Using Digital Micro-Mirror Dynamic Mask
,”
Sens. Actuators
, A,
121
, pp.
113
120
.10.1016/j.sna.2004.12.011
6.
Zhang
,
X.
,
Jiang
,
X. N.
and
Sun
,
C.
,
1998
, “
Micro-Stereolithography of Polymeric and Ceramic Microstructures
”.
Sens. Actuators, A
,
77
, pp.
149
156
.10.1016/S0924-4247(99)00189-2
7.
Farsari
,
M.
,
Huang
,
S.
,
Young
,
R. C. D.
,
Heywood
,
M. I.
,
Morrell
,
P. J. B.
, and
Chatwin
,
C. R.
,
1998
, “
Four-Wave Mixing Studies of UV Curable Resins for Microstereolithography
,”
J. Photochem. Photobiol., A
,
115
(
1
), pp.
81
87
.10.1016/S1010-6030(98)00242-1
8.
Bertsch
,
A.
,
Zissi
,
S.
,
Jezequel
,
J. Y.
,
Corbel
,
S.
and
Andre
,
J. C.
,
1997
, “
Microstereolithography Using a Liquid Crystal Display as Dynamic Mask Generator
,”
Microsyst. Technol.
,
3
(
2
), pp.
42
47
.10.1007/s005420050053
9.
Maruo
,
S.
, and
Kawata
,
S.
,
1998
, “
Two Photon-Absorbed Near Infrared Photopolymerization for Three Dimensional Microfabrication
,”
J. Microelectromech. Syst.
,
7
(
4
), pp.
411
415
.10.1109/84.735349
10.
Maruo
,
S.
,
Nakamura
,
O.
, and
Kawata
,
S.
,
1997
, “
Three Dimensional Microfabrication With Two Photon Absorbed Photopolymerization
,”
Opt. Lett.
,
22
(
2
), pp.
132
137
.10.1364/OL.22.000132
11.
Lee
,
K.-S.
,
Kim
,
R. H.
,
Yang
,
D.-Y.
, and
Park
,
S. H.
,
2008
, “
Advances in 3D Nano/Microfabrication Using Two-Photon Initiated Polymerization
,”
Prog. Polym. Sci.
,
33
, pp.
631
681
.10.1016/j.progpolymsci.2008.01.001
12.
Maruo
,
S.
,
Ikuta
,
K.
, and
Korogi
,
H.
,
2003
, “
Force-Controllable, Optically Driven Micromachines Fabricated by Single-Step Two-Photon Microstereolithography
,”
J. Microelectromech Syst.
,
12
, pp.
533
539
.10.1109/JMEMS.2003.817894
13.
Maruo
,
S.
, and
Ikuta
,
K.
,
1998
, “
New Microstereolithography (Super-IH Process) to Create 3D Freely Movable Micromechanism Without Sacrificial Layer Technique
,”
Micromechatronics and Human Science
, 1998. MHS '98, Proceedings of International Symposium, Nagoya, Japan, Nov. 25–28, IEEE, New York, NY, pp.
115
120
.
14.
Sager
,
B.
, and
Rosen
,
D. W.
,
2008
, “
Use of Parameter Estimation for Stereolithgraphy Surface Finish Improvement
,”
Rapid Prototyping J.
,
14
, pp.
213
220
.10.1108/13552540810896166
15.
Jariwala
,
A. S.
,
Schwerzel
,
R. E.
, and
Rosen
,
D. W.
,
2011
, “
Real-Time Interferometric Monitoring System for Exposure Controlled Projection Lithography
,”
Proceedings of. Solid Freeform Fabrication Symposium
, August 8–10, 2011, The University of Texas, Austin, TX, pp.
99
110
.
16.
Pan
,
Y.
Zhao
,
X.
Zhou
,
C.
, and
Chen
,
Y.
,
2012
, “
Smooth Surface Fabrication in Mask Projection Based Stereolithography
,”
J. Manuf. Process.
,
14
, pp.
460
470
.10.1016/j.jmapro.2012.09.003
17.
Jariwala
,
A. S.
,
Schwerzel
,
R. E.
,
Nikoue
,
H. A.
, and
Rosen
,
D. W.
,
2012
, “
Exposure Controlled Projection Lithography for Microlens Fabrication
,”
Proc. SPIE
,
8249
,
824917
.10.1117/12.909087
18.
Thian
,
S. C. H.
,
Tang
,
Y.
,
Fuh
,
J. Y. H.
,
Wong
,
Y. S.
,
Lu
,
L.
and
Loh
,
H. T.
,
2006
, “
Micro-Rapid-Prototyping via Multi-Layered Photo-Lithography
,”
Int. J. Adv. Manuf. Technol.
,
29
, pp.
1026
1032
.10.1007/s00170-005-2620-2
19.
Gandhi
,
P. S.
, and
Bhole
,
K. S.
,
2011
, “
3D Microfabrication Using Bulk Lithography
,” IMECE2011-62473,
Proceedings of International Mechanical Engineering Congress and Exposition
, Denver, CO, Nov. 11–17, ASME, New York, NY, 11, pp.
393
399
.
20.
Nagamori
,
S.
, and
Yoshizawa
,
T.
,
2003
, “
Research on Solidification of Resin in Stereolithography
,”
Proc. SPIE
,
42
, pp.
2096
2103
.10.1117/1.1579704
21.
Coherent, Inc.
,
2007
, “
Ar+ ion Laser System
,” Available at: http://www.coherent.com
22.
Newport and Optics
,
2007
, “
UV Optics, Mirrors, Lenses
,” Available at: http://www.newport.com
23.
Holmarc
,
2007
, “
Optomechanical Translational Stages
,” Available at: http://www.holmarc.com/products.html
24.
Neos Technologies
,
2007
, “
Acousto-Optic Modulators
,” Available at: http://www.neostech.com
25.
dSPACE
,
2007
, “
dSPACE DS1104 Micro-Controller
,” Available at: http://www.dspace.de
26.
Sigma Aldrich
,
2007
, “
HDDA Monomer and BEE Photoinitiator
,” Available at: http://www.sigmaaldrich.com
27.
Olympus
,
2012
, “
Optical Microscope
,” Available at: http://www.olympus-ims.com/en/microscope/mx51/
28.
Maruo
,
S.
, and
Ikuta
,
K.
,
2002
, “
Submicron Stereolithography for the Production of Freely Movable Mechanisms by Using Single Photon Polymerization
,”
Sens. Actuators, A
,
100
, pp.
70
76
.10.1016/S0924-4247(02)00043-2
29.
Fang
,
N.
,
Sun
,
C.
, and
Zhang
,
X.
,
2004
, “
Diffusion-Limited Photopolymerization in Scanning Micro-Stereolithograpy
,”
Appl. Phys. A
,
79
, pp.
1839
1842
.10.1007/s00339-004-2938-x
30.
O'Brien
,
A. K.
, and
Bowman
,
C. N.
,
2006
, “
Impact of Oxygen on Photopolymerization Kinetics and Polymer Structure
,”
Macromolecules
,
39
, pp.
2501
2506
.10.1021/ma051863l
31.
Decker
,
C.
, and
Jenkins
,
A. D.
,
1985
, “
Kinetic Approach of O2 Inhibition in Ultraviolet- and Laser-Induced Polymerizations
,”
Macromolecules
,
18
, pp.
1241
1244
.10.1021/ma00148a034
32.
Goodner
,
M. D.
, and
Bowman
,
C. N.
,
2002
, “
Development of a Comprehensive Free Radical Photopolymerization Model Incorporating Heat and Mass Transfer Effects in Thick Films
,”
Chem. Eng. Sci.
,
57
, pp.
887
900
.10.1016/S0009-2509(01)00287-1
33.
Pynaert
,
R.
,
Buguet
,
J.
,
Croutxe-Barghorn
,
C.
,
Moireaub
,
P.
, and
Allonas
,
X.
,
2013
, “
Effect of Reactive Oxygen Species on the Kinetics of Free Radical Photopolymerization
,”
Polym. Chem.
,
4
, pp.
2475
2479
.10.1039/c3py21163k
34.
Kewitsch
,
A. S.
, and
Yariv
,
A.
,
1996
, “
Self-Focusing and Self-trapping of Optical Beams Upon Photopolymerization
,”
Opt. Lett.
,
21
, pp.
24
26
.10.1364/OL.21.000024
35.
Dorkenoo
,
K. D.
,
Gillot
,
F.
,
Cregut
,
O.
,
Sonnefraud
,
Y.
,
Fort
,
A.
, and
Leblond
,
H.
,
2004
, “
Control of the Refractive Index in Photopolymerizable Materials for (2+1)D Solitary Wave Guide Formation
,”
Phys. Rev. Lett.
,
93
,
143905
.10.1103/PhysRevLett.93.143905
36.
Kasala
,
K.
, and
Saravanamuttu
,
K.
,
2008
, “
An Experimental Study of the Interactions of Self-trapped White Light Beams in a Photopolymer
,”
Appl. Phys. Lett.
,
93
,
051111
.10.1063/1.2957994
37.
Crank
,
J.
,
2004
,
The Mathematics of Diffusion
,
Oxford Science Publication
,
New York, NY
, pp.
154
282
.
You do not currently have access to this content.