This paper studies the effects of crystallography on the microscale machining characteristics of polycrystalline brittle materials on a quantitative basis. It is believed that during micromachining of brittle materials, plastic deformation can occur at the tool-workpiece interface due to the presence of high compressive stresses which leads to chip formation as opposed to crack propagation. The process parameters for such a machining process are comparable to the size of the grains, and hence crystallography assumes importance. The crystallographic effects include grain size, grain boundaries (GB), and crystallographic orientation (CO) for polycrystalline materials. The size of grains (crystals), whose distribution is analyzed as a log-normal curve, has an effect on the yield stress of a material as described by the Hall–Petch equation. The effects of grain boundary and orientation have been considered using the principles of dislocation theory. The microstructural anisotropy in a deformed polycrystalline material is influenced by geometrically necessary boundaries (GNB) and incidental dislocation boundaries (IDB). The dislocation theory takes both types of dislocations into account and relates the material flow stress to the dislocation density. The proposed analysis is compared with previously reported experimental data on polycrystalline germanium (p-Ge). This paper aims to provide a deeper physical insight into the microstructural aspects of polycrystalline brittle materials during precision microscale machining.

References

References
1.
Moore
,
M. A.
, and
King
,
F. S.
,
1980
, “
Fracture vs Plastic Deformation Processes in the Sliding Abrasive Wear of Ceramics
,”
Wear
,
60
, pp.
123
140
.10.1016/0043-1648(80)90253-7
2.
Tow
,
S. B.
, and
McPherson
,
R.
,
1986
, “
Fine Scale Abrasive Wear of Ceramics by a Plastic Cutting Process
,”
Science of Hard Materials
,
E. A.
Almond
,
C. A.
Brookes
,
R.
Warren
, and
J. W.
Arrowsmith
, eds.,
Bristol
,
UK
, p.
865
.
3.
Huerta
,
M.
, and
Malkin
,
S.
,
1976
, “
Grinding of Glass: The Mechanics of the Process
,”
ASME J. Eng. Ind.
, pp.
459
467
.10.1115/1.3438907
4.
Lawn
,
B. R.
,
Jensen
,
T.
, and
Aurora
,
A.
,
1976
, “
Brittleness as an Indentation Size Effect
,”
J. Mater. Sci. Lett.
,
11
, pp.
573
575
.10.1007/BF00540940
5.
Blake
,
Peter N.
,
Scattergood
, and
Ronald
O.
,
1990
, “
Ductile-Regime Machining of Germanium and Silicon
,”
J. Am. Ceram. Soc.
,
73
(
4
), pp.
949
957
.10.1111/j.1151-2916.1990.tb05142.x
6.
Blackley
,
W. S.
, and
Scattergood
,
R. O.
,
1991
, “
Ductile-Regime Machining Model for Diamond Turning of Brittle Materials
,”
Precis. Eng.
,
13
(
2
), pp.
95
103
.10.1016/0141-6359(91)90500-I
7.
Fang
,
F. Z.
, and
Venkatesh
,
V. C.
,
1998
, “
Diamond Cutting of Silicon With Nanometric Finish
,”
CIRP Ann.-Manuf. Technol.
,
47
, pp.
45
49
.10.1016/S0007-8506(07)62782-6
8.
Patten
,
J.
,
Gao
,
W.
, and
Yasuto
,
K.
,
2005
, “
Ductile Regime Nanomachining of Single-Crystal Silicon Carbide
,”
ASME J. Manuf. Sci. Eng.
,
127
, pp.
522
532
.10.1115/1.1949614
9.
Liu
,
K.
,
Li
,
X. P.
,
Rahman
,
M.
, and
Liu
,
X. D.
,
2004
, “
A Study of the Cutting Modes in the Grooving of Tungsten Carbide
,”
Int. J. Adv. Manuf. Technol.
,
24
, pp.
321
326
.10.1007/s00170-003-1565-6
10.
Yan
,
J.
,
Tamaki
,
J.
,
Syoji
,
K.
, and
Kuriyawaga
,
T.
,
2004
, “
Single Point Diamond Turning of CaF2 for Nanometric Surface
,”
Int. J. Adv. Manuf. Technol.
,
24
, pp.
640
646
.10.1007/s00170-003-1747-2
11.
Moriwaki
,
T.
,
Shamoto
,
E.
, and
Inoue
,
K.
,
1992
, “
Ultraprecision Ductile Cutting of Glass by Applying Ultrasonic Vibration
,”
CIRP Ann.-Manuf. Technol.
,
41
, pp.
141
144
.10.1016/S0007-8506(07)61171-8
12.
Yan
,
J.
,
Takahashi
,
Y.
,
Tamaki
,
J.
,
Kubo
,
A.
,
Kuriyawaga
,
T.
, and
Sato
,
Y.
,
2006
, “
Ultraprecision Machining Characteristics of Poly-Crystalline Germanium
,”
Int. J., Ser. C
,
49
(
1
), pp.
63
69
.10.1299/jsmec.49.63
13.
Liu
,
X.
,
DeVor
,
R. E.
,
Kapoor
,
S. G.
, and
Ehmann
,
K. F.
,
2004
, “
The Mechanics of Machining at the Microscale: Assessment of the Current State of the Science
,”
ASME J. Manuf. Sci. Eng.
,
126
(
4
), pp.
666
678
.10.1115/1.1813469
14.
Jahanmir, S.,
1999
, Machining of ceramics and composites, CRC Press, Boca Raton, FL.
15.
Shibata
,
T.
,
Fujii
,
S.
, and
Ikeda
,
M.
,
1996
, “
Ductile-Regime Turning Mechanism of Single-Crystal Silicon
,”
Precis. Eng.
,
18
(
2/3
), pp.
129
137
.10.1016/0141-6359(95)00054-2
16.
Sharif Uddin
,
M.
,
Seah
,
K. H. W.
,
Li
,
X. P.
,
Rahman
,
M.
, and
Liu
,
K.
,
2004
, “
Effect of Crystallographic Orientation on Wear of Diamond Tools for Nano-Scale Ductile Cutting of Silicon
,”
Wear
,
257
, pp.
751
759
.10.1016/j.wear.2004.03.012
17.
Lee
,
W. B.
,
To
,
S.
, and
Cheung
,
C. F.
,
2000
, “
Effect of Crystallographic Orientation in Diamond Turning of Copper Single Crystals
,”
Scr. Mater.
,
42
, pp.
937
945
.10.1016/S1359-6462(00)00329-8
18.
Zhou
,
M.
,
Ngoi
,
B. K. A.
,
Zhong
,
Z. W.
, and
Wang
,
X. J.
,
2001
, “
The Effect of Material Microstructure on Microcutting Processes
,”
Mater. Manuf. Process.
,
16
(
6
), pp.
815
828
.10.1081/AMP-100108701
19.
Hall
,
E. O.
,
1951
, “
The Deformation and Ageing of Mild Steel: III Discussion of Results
,”
Proc. Phys. Soc.
,
B64
, pp.
747
753
.10.1088/0370-1301/64/9/303
20.
Petch
,
N. J.
,
1953
, “
Cleavage Strength of Polycrystals
,”
J. Iron Steel Inst.
,
174
(
1
), pp.
25
28
.10.1016/0013-7944(87)90050-6
21.
Li
,
B. L.
,
Cao
,
W. Q.
,
Liu
,
Q.
, and
Liu
,
W.
,
2003
, “
Flow Stress and Microstructure of the Cold-Rolled IF-Steel
,”
Mater. Sci. Eng.
,
A356
, pp.
37
42
.10.1016/S0921-5093(02)00889-4
22.
Gao
,
H.
, and
Huang
,
Y.
,
2001
, “
Taylor-Based Nonlocal Theory of Plasticity
,”
Int. J. Solids Struct.
,
38
, pp.
2615
2637
.10.1016/S0020-7683(00)00173-6
23.
Liu
,
K.
,
Subbiah
,
S.
, and
Melkote
,
S. N.
,
2005
, “
Material Strengthening Mechanisms and their Contribution to Size Effect in Micro-Cutting
,”
ASME International Mechanical Engineering Congress and Exposition
,
Orlando, Florida
.
24.
Conrad
,
H.
,
2004
, “
Grain-Size Dependence of the Flow Stress of Cu From Millimeters to Nanometers
,”
Metall. Mater. Trans. A
,
35A
, pp.
2681
2695
.10.1007/s11661-004-0214-5
25.
Hughes
,
D. A.
, and
Hansen
,
N.
,
2000
, “
Microstructure and Strength of Nickel at Large Strains
,”
Acta Mater.
,
48
, pp.
2985
3004
.10.1016/S1359-6454(00)00082-3
26.
Patten
,
J. A.
,
Cherukuri
,
H.
, and
Yan
,
J.
,
2004
, “
Ductile-Regime Machining of Semiconductors and Ceramics
,”
High-Pressure Surface Science and Engineering
,
Y.
Gogotsi
, and
V.
Domnich
, eds.,
Institute of Physics
,
Bristol, UK
, Chap. 6.
27.
Basuray
,
P. K.
,
Mishra
,
B. K.
, and
Lal
,
G. K.
,
1977
, “
Transition From Ploughing to Cutting During Cutting With Blunt Tool
,”
Wear
,
43
, pp.
341
349
.10.1016/0043-1648(77)90130-2
28.
Venkatachalam
,
S.
, and
Liang
,
S. Y.
,
2007
, “
Effects of Ploughing Forces and Friction Coefficient in Microscale Machining
,”
ASME J. Manuf. Sci. Eng.
,
129
(
2
), pp.
274
280
.10.1115/1.2673449
29.
Liu, K., Li, X.P., 2001, “Ductile cutting of tungsten carbide,”
Journal of Materials Processing Technology
,
113
, pp. 348–354. 10.1016/S0924-0136(01)00582-9
30.
Stolarski
,
T. A.
,
1990
,
Tribology in Machine Design
,
Butterworth-Heinemann Publishers
,
Oxford, UK
.
31.
Johnson
,
G. R.
, and
Cook
,
W. H.
,
1983
, “
A Constitutive Model and Data for Metals Subject to Large Strains, High Strain Rates and High Temperatures
,”
Proceedings of the Seventh International Symposium on Ballistics
,
Hague, Netherlands
, pp.
541
547
.
32.
Oxley
,
P. L. B.
,
1989
,
The Mechanics of Machining: An Analytical Approach to Assessing Machinability
,
Ellis Horwood Limited
,
Chichester, UK
.
33.
Liu
,
Q.
,
1994
, “
A Simple Method for Determining Orientation and Misorientation of the Cubic Crystal Specimen
,”
J. Appl. Cryst.
,
27
, pp.
755
761
.10.1107/S0021889894002062
34.
Hall
,
E. O.
,
1951
, “
The Deformation and Ageing of Mild Steel: III Discussion of Results
,”
Proc. Phys. Soc.
, B
64
, pp.
747
753
.10.1088/0370-1301/64/9/303
35.
Randle
,
V.
,
1993
,
The Measurement of Grain Boundary Geometry
,
Institute of Physics Publishing
,
Bristol, UK
.
36.
Brandon
,
D. G.
, and
Kaplan
,
W. D.
,
1999
,
Microstructural Characterization of Materials
,
John Wiley & Sons, Ltd.
,
Chichester, UK
.
37.
Liu
,
Q.
,
Jensen
,
D. J.
, and
Hansen
,
N.
,
1998
, “
Effect of Grain Orientation on Deformation Structure in Cold-Rolled Polycrystalline Aluminum
,”
Acta Mater.
,
46
(
16
), pp.
5819
5838
.10.1016/S1359-6454(98)00229-8
38.
Frost
,
H. J.
, and
Ashby
,
M. F.
,
1982
,
Deformation Mechanism Maps—The Plasticity and Creep of Metals and Ceramics
,
Pergamon
,
UK
.
You do not currently have access to this content.