Metallic components with large-area functional surface micro/mesostructures have been increasingly utilized in various industrial fields, such as friction/wear reduction, viscous drag reduction, and energy efficiency enhancement. Roll-to-plate (R2P) imprinting process is an efficient and economical method in fabricating micro/mesofeatures on the large-area surface of the metal parts. However, process design methods based on scale law cannot be directly used due to size effects. Its formability is greatly influenced by tool feature size and material grain size. In this study, a lab-scale R2P imprinting system was developed to fabricate the microsructures on the surface of metallic materials. The specimens of pure aluminum and pure copper with various size grains were prepared. Rigid die with geometric dimensions was fabricated and series of experiments were conducted. The microfeature height of the imprinted workpiece was measured to evaluate the effects of tool feature dimensions (width, spacing, and fillet) and metal grain sizes. It is found that the groove width and fillet had more significant effect on the microfeature formation among the die cavity geometric parameters. Wider groove could enhance the microforming ability and large fillet could improve the flowing ability. From the viewpoint of polycrystalline material, grain structures significantly affected the microfeature formation. When the grain size was smaller than the groove width, the material flowed more easily into the die cavity with increasing of the grain size because of the decrease of grain boundary strengthening effect.

References

References
1.
Evans
,
C. J.
, and
Bryan
,
J. B.
,
1999
, “‘
Structured’, ‘Textured’ or ‘Engineered’ Surfaces
,”
CIRP Ann. - Manuf. Technol.
,
48
(
2
), pp.
541
556
.10.1016/S0007-8506(07)63233-8
2.
Walsh
,
M. J.
,
1983
, “
Riblets as a Viscous Drag Reduction Technique
,”
AIAA J.
,
21
(
4
), pp.
485
486
.10.2514/3.60126
3.
Bechert
,
D. W.
,
Bruse
,
M.
,
Hage
,
W.
,
VanderHoeven
,
J. G. T.
, and
Hoppe
,
G.
,
1997
, “
Experiments on Drag-Reducing Surfaces and Their Optimization With an Adjustable Geometry
,”
J. Fluid Mech.
,
338
, pp.
59
87
.10.1017/S0022112096004673
4.
Dean
,
B.
, and
Bhushan
,
B.
,
2010
, “
Shark-Skin Surfaces for Fluid-Drag Reduction in Turbulent Flow: A Review
,”
Philos. Trans. R. Soc. A-Math. Phys. Eng. Sci.
,
368
(
1929
), pp.
4775
4806
.10.1098/rsta.2010.0201
5.
Meng
,
F. M.
,
Zhou
,
R.
,
Davis
,
T.
,
Cao
,
J.
,
Wang
,
Q. J.
,
Hua
,
D.
, and
Liu
,
J.
,
2010
, “
Study on Effect of Dimples on Friction of Parallel Surfaces Under Different Sliding Conditions
,”
Appl. Surf. Sci.
,
256
(
9
), pp.
2863
2875
.10.1016/j.apsusc.2009.11.041
6.
Zhou
,
R.
,
Cao
,
J.
,
Wang
,
Q. J.
,
Meng
,
F. M.
,
Zimowski
,
K.
, and
Xia
,
Z. C.
,
2011
, “
Effect of EDT Surface Texturing on Tribological Behavior of Aluminum Sheet
,”
J. Mater. Process. Technol.
,
211
(
10
), pp.
1643
1649
.10.1016/j.jmatprotec.2011.05.004
7.
Yao
,
Z. H.
,
Kim
,
G. Y.
,
Faidley
,
L.
,
Zou
,
Q. Z.
,
Mei
,
D. Q.
, and
Chen
,
Z. C.
,
2012
, “
Effects of Superimposed High-Frequency Vibration on Deformation of Aluminum in Micro/Meso-Scale Upsetting
,”
J. Mater. Process. Technol.
,
212
(
3
), pp.
640
646
.10.1016/j.jmatprotec.2011.10.017
8.
Yao
,
Z. H.
,
Kim
,
G. Y.
,
Faidley
,
L.
,
Zou
,
Q. Z.
,
Mei
,
D. Q.
, and
Chen
,
Z. C.
,
2011
, “
Experimental Study of High-Frequency Vibration Assisted Micro/Mesoscale Forming of Metallic Materials
,”
ASME J. Manuf. Sci. Eng.
,
133
(
6
),
p. 061009
.10.1115/1.4004612
9.
Samm
,
K.
,
Terzi
,
M.
,
Ostendorf
,
A.
, and
Wulfsberg
,
J.
,
2009
, “
Laser-Assisted Micro-Forming Process With Miniaturised Structures in Sapphire Dies
,”
Appl. Surf. Sci.
,
255
(
24
), pp.
9830
9834
.10.1016/j.apsusc.2009.04.100
10.
Chou
,
S. Y.
,
Keimel
,
C.
, and
Gu
,
J.
,
2002
, “
Ultrafast and Direct Imprint of Nanostructures in Silicon
,”
Nature
,
417
(
6891
), pp.
835
837
.10.1038/nature00792
11.
Mai
,
J. M.
,
Peng
,
L. F.
,
Lai
,
X. M.
, and
Lin
,
Z. Q.
,
2013
, “
Electrical-Assisted Embossing Process for Fabrication of Micro-Channels on 316L Stainless Steel Plate
,”
J. Mater. Process. Technol.
,
213
(
2
), pp.
314
321
.10.1016/j.jmatprotec.2012.09.013
12.
Tan
,
H.
,
Gilbertson
,
A.
, and
Chou
,
S. Y.
,
1998
, “
Roller Nanoimprint Lithography
,”
J. Vac. Sci. Technol. B
,
16
(
6
), pp.
3926
3928
.10.1116/1.590438
13.
Chang
,
C.
,
Yang
,
S.
, and
Sheh
,
J.
,
2006
, “
A Roller Embossing Process for Rapid Fabrication of Microlens Arrays on Glass Substrates
,”
Microsyst. Technol.
,
12
(
8
), pp.
754
759
.10.1007/s00542-006-0103-5
14.
Chang
,
C. Y.
,
Yang
,
S. Y.
, and
Chu
,
M. H.
,
2007
, “
Rapid Fabrication of Ultraviolet-Cured Polymer Microlens Arrays by Soft Roller Stamping Process
,”
Microelectron. Eng.
,
84
(
2
), pp.
355
361
.10.1016/j.mee.2006.11.004
15.
Liu
,
S. J.
, and
Chang
,
Y. C.
,
2007
, “
A Novel Soft-Mold Roller Embossing Method for the Rapid Fabrication of Micro-Blocks Onto Glass Substrates
,”
J. Micromech. Microeng.
,
17
(
8
), pp.
172
179
.10.1088/0960-1317/17/1/022
16.
Wu
,
J. T.
, and
Yang
,
S. Y.
,
2010
, “
A Gasbag-Roller-Assisted UV Imprinting Technique for Fabrication of a Microlens Array on a PMMA Substrate
,”
J. Micromech. Microeng.
,
20
, p.
085038
.10.1088/0960-1317/20/8/085038
17.
Makela
,
T.
,
Haatainen
,
T.
,
Majander
,
P.
, and
Ahopelto
,
J.
,
2007
, “
Continuous Roll to Roll Nanoimprinting of Inherently Conducting Polyaniline
,”
Microelectron. Eng.
,
84
(
5–8
), pp.
877
879
.10.1016/j.mee.2007.01.131
18.
Makela
,
T.
,
Haatainen
,
T.
,
Majander
,
P.
,
Ahopelto
,
J.
, and
Lambertini
,
V.
,
2008
, “
Continuous Double-Sided Roll-to-Roll Imprinting of Polymer Film
,”
Jpn. J. Appl. Phys., Part 1
,
47
(
6
), pp.
5142
5144
.10.1143/JJAP.47.5142
19.
Sahli
,
M.
,
Malek
,
C. K.
, and
Gelin
,
J. C.
,
2009
, “
3D Modelling and Simulation of the Filling of Cavities by Viscoelastic Polymer in Roll Embossing Process
,”
Int. J. Mater. Form.
,
2
, pp.
725
728
.10.1007/s12289-009-0542-5
20.
Ng
,
S. H.
, and
Wang
,
Z. F.
,
2009
, “
Hot Roller Embossing for Microfluidics: Process and Challenges
,”
Microsyst. Technol.
,
15
(
8
), pp.
1149
1156
.10.1007/s00542-008-0722-0
21.
Yeo
,
L. P.
,
Ng
,
S. H.
,
Wang
,
Z. F.
,
Wang
,
Z. P.
, and
de Rooij
,
N. F.
,
2009
, “
Micro-Fabrication of Polymeric Devices Using Hot Roller Embossing
,”
Microelectron. Eng.
,
86
(
4–6
), pp.
933
936
.10.1016/j.mee.2008.12.021
22.
Yeo
,
L. P.
,
Ng
,
S. H.
,
Wang
,
Z. F.
,
Xia
,
H. M.
,
Wang
,
Z. P.
,
Thang
,
V. S.
,
Zhong
,
Z. W.
, and
de Rooij
,
N. F.
,
2010
, “
Investigation of Hot Roller Embossing for Microfluidic Devices
,”
J. Micromech. Microeng.
,
20
(
1
), p.
015017
.10.1088/0960-1317/20/1/015017
23.
Song
,
J. H.
,
Lee
,
H. J.
,
Lan
,
S.
,
Lee
,
N. K.
,
Lee
,
G. A.
,
Lee
,
T. J.
,
Choi
,
S.
, and
Bae
,
S. M.
,
2010
, “
Development of the Roll Type Incremental Micro Pattern Imprint System for Large Area Pattern Replication
,” Precision Assembly Technologies and Systems, pp.
97
–104
.
24.
Lan
,
S. H.
,
Song
,
J. H.
,
Lee
,
M. G.
,
Ni
,
J.
, and
Lee
,
H. J.
,
2010
, “
Continuous Roll-to-Flat Thermal Imprinting Process for Large-Area Micro-Pattern Replication on Polymer Substrate
,”
Microelectron. Eng.
,
87
(
12
), pp.
2596
2601
.10.1016/j.mee.2010.07.021
25.
Velten
,
T.
,
Schuck
,
H.
,
Haberer
,
W.
, and
Bauerfeld
,
F.
,
2010
, “
Investigations on Reel-to-Reel Hot Embossing
,”
Int. J. Adv. Manuf. Technol.
,
47
(
1
), pp.
73
80
.10.1007/s00170-009-1975-1
26.
Velten
,
T.
,
Bauerfeld
,
F.
,
Schuck
,
H.
,
Scherbaum
,
S.
,
Landesberger
,
C.
, and
Bock
,
K.
,
2011
, “
Roll-to-Roll Hot Embossing of Microstructures
,”
Microsyst. Technol.
,
17
(
4
), pp.
619
627
.10.1007/s00542-010-1158-x
27.
Zhou
,
R.
,
Cao
,
J.
,
Ehmann
,
K.
, and
Xu
,
C.
,
2011
, “
An Investigation on Deformation-Based Surface Texturing
,”
J. Manuf. Sci. Eng.
,
133
(
6
), p.
061017
.10.1115/1.4005459
28.
Zhou
,
R.
,
Cao
,
J.
,
Ehmann
,
K.
,
Chuang
,
Y.
,
Lee
,
A. H. C.
,
Wu
,
C. F.
, and
Huang
,
K. M.
,
2011
, “
A Novel Desktop Deformation-Based Micro Surface Texturing System
,”
Proceedings of the 6th International Conference on MicroManufacturing, ICOMM
, pp.
91
97
.
29.
Ng
,
M. K.
,
Fan
,
R.
,
Zhou
,
R.
,
Smith
,
E.
III
,
Gao
,
R. X.
, and
Cao
,
J.
,
2012
, “
Micro Surface-Texturing by Electrically-Assisted Micro-Rolling
,”
Proceedings of the 7th International Conference on MicroManufacturing, ICOMM
, pp.
259
266
.
30.
Kurnia
,
W.
, and
Yoshino
,
M.
,
2009
, “
Nano/Micro Structure Fabrication of Metal Surfaces Using the Combination of Nano Plastic Forming, Coating and Roller Imprinting Processes
,”
J. Micromech. Microeng.
,
19
(
12
),
p. 125028
.10.1088/0960-1317/19/12/125028
31.
Yamamoto
,
M.
, and
Kuwabara
,
T.
,
2008
, “
Micro Form Rolling: Imprinting Ability of Microgrooves on Metal Shafts
,”
J. Mater. Process. Technol.
,
201
(
1–3
), pp.
232
236
.10.1016/j.jmatprotec.2007.11.137
32.
Hirt
,
G.
, and
Thome
,
M.
,
2007
, “
Large Area Rolling of Functional Metallic Micro Structures
,”
Prod. Eng.
,
1
(
4
), pp.
351
356
.10.1007/s11740-007-0067-z
33.
Hirt
,
G.
, and
Thome
,
M.
,
2008
, “
Rolling of Functional Metallic Surface Structures
,”
CIRP Ann.-Manuf. Technol.
,
57
(
1
), pp.
317
320
.10.1016/j.cirp.2008.03.034
34.
Klocke
,
F.
,
Feldhaus
,
B.
, and
Mader
,
S.
,
2007
, “
Development of an Incremental Rolling Process for the Production of Defined Riblet Surface Structures
,”
Prod. Eng.
,
1
(
3
), pp.
233
237
.10.1007/s11740-007-0031-y
35.
Engel
,
U.
, and
Eckstein
,
R.
,
2002
, “
Microforming—From Basic Research to Its Realization
,”
J. Mater. Process. Technol.
,
125
, pp.
35
44
.10.1016/S0924-0136(02)00415-6
36.
Peng
,
L. F.
,
Liu
,
D. A.
,
Hu
,
P.
,
Lai
,
X. M.
, and
Ni
,
J.
,
2010
, “
Fabrication of Metallic Bipolar Plates for Proton Exchange Membrane Fuel Cell by Flexible Forming Process-Numerical Simulations and Experiments
,”
J. Fuel Cell Sci. Technol.
,
7
(
3
), p.
031009
.10.1115/1.3207870
37.
Li
,
H. Z.
,
Dong
,
X. H.
,
Shen
,
Y.
,
Diehl
,
A.
,
Hagenah
,
H.
,
Engel
,
U.
, and
Merklein
,
M.
,
2010
, “
Size Effect on Springback Behavior Due to Plastic Strain Gradient Hardening in Microbending Process of Pure Aluminum Foils
,”
Mater. Sci. Eng. A
,
527
(
16–17
), pp.
4497
4504
.10.1016/j.msea.2010.03.105
38.
Geiger
,
M.
,
Kleiner
,
M.
,
Eckstein
,
R.
,
Tiesler
,
N.
, and
Engel
,
U.
,
2001
, “
Microforming
,”
CIRP Ann.-Manuf. Technol.
,
50
(
2
), pp.
445
462
.10.1016/S0007-8506(07)62991-6
39.
Raulea
,
L. V.
,
Goijaerts
,
A. M.
,
Govaert
,
L. E.
, and
Baaijens
,
F. P. T.
,
2001
, “
Size Effects in the Processing of Thin Metal Sheets
,”
J. Mater. Process. Technol.
,
115
(
1
), pp.
44
48
.10.1016/S0924-0136(01)00770-1
40.
Deng
,
J. H.
,
Fu
,
M. W.
, and
Chan
,
W. L.
,
2011
, “
Size Effect on Material Surface Deformation Behavior in Micro-Forming Process
,”
Mater. Sci. Eng. A
,
528
(
13–14
), pp.
4799
4806
.10.1016/j.msea.2011.03.005
41.
Wang
,
C. J.
,
Shan
,
D. B.
,
Zhou
,
J.
,
Guo
,
B.
, and
Sun
,
L. N.
,
2007
, “
Size Effects of the Cavity Dimension on the Microforming Ability During Coining Process
,”
J. Mater. Process. Technol.
,
187
, pp.
256
259
.10.1016/j.jmatprotec.2006.11.055
42.
Kim
,
G. Y.
,
Koc
,
M.
, and
Ni
,
J.
,
2008
, “
Experimental and Numerical Investigations on Microcoining of Stainless Steel 304
,”
ASME J. Manuf. Sci. Eng.
,
130
(
4
), p.
041017
.10.1115/1.2953235
43.
Chan
,
W. L.
,
Fu
,
M. W.
, and
Lu
,
J.
,
2011
, “
Experimental and Simulation Study of Deformation Behavior in Micro-Compound Extrusion Process
,”
Mater. Des.
,
32
(
2
), pp.
525
534
.10.1016/j.matdes.2010.08.032
44.
Van Putten
,
K.
, and
Hirt
,
G.
,
2010
, “
Size Effects on Miniaturised Rolling Processes
,”
Ironmaking Steelmaking
,
37
(
4
), pp.
283
289
.10.1179/030192310X12646889255861
45.
Van Putten
,
K.
,
Kopp
,
R.
, and
Hirt
,
G.
,
2007
, “
Influences of Size Effects on the Rolling of Micro Strip
,”
AIP Conf. Proc.
,
907
, pp.
629
634
.10.1063/1.2729583
You do not currently have access to this content.