A dynamic model for analyzing the wire transport system of micro w-EDM (wire electronic discharge machining) is proposed. Based on the model, two mechanisms are proposed to stabilize the wire tension. The first mechanism is the active wire feed apparatus where the wire spool is fed by a motor actively, instead of passively pulled by the windup motor. Hence, the inertia loading of the wire spool can be isolated from the system. The second mechanism is mounting a multilayer damped vibration absorber (MDVA) on the system. As the wire tension variation occurs, the MDVA oscillates to attenuate the wire tension variation. The performances of both mechanisms on the wire tension variation are theoretically investigated and experimentally validated through corner cutting on the 1.0 mm thickness tungsten carbide. Results show that the wire tension variation can be reduced from 10.3 gf to 3.3 gf after mounting the active wire feed apparatus and the oscillation frequency is increased from 13 Hz to 21 Hz. The wire tension variation can be further reduced to 1.9 gf after mounting the MDVA on the system and the high frequency perturbation is significantly attenuated. The 30-deg corner cutting shows that the corner error are significantly reduced from 26.0 μm to 12.0 μm; the standard deviation of kerf is reduced from 4.34 μm to 0.96 μm, and the surface roughness Ra is reduced from 1.15 μm to 0.63 μm after employing both developed mechanisms.

References

References
1.
Masuzawa
,
T.
,
2000
, “
State of the Art of Micromachining
,”
Ann. CIRP
,
49
(
2
), pp.
473
488
.10.1016/S0007-8506(07)63451-9
2.
Dario
,
P.
,
Carrozza
,
M. C.
,
Croce
,
N.
,
Montesi
,
M. C.
, and
Cocco
,
M.
,
1995
, “
Non-Traditional Technologies for Microfabrication
,”
J. Micromech. Microeng
,
5
, pp.
64
71
.10.1088/0960-1317/5/2/003
3.
Liao
,
Y. S.
,
Chen
,
S. T.
, and
Lin
,
C. S.
,
2005
, “
Development of a High Precision Tabletop Versatile CNC Wire-EDM for Making Intricate Micro Parts
,”
J. Micromech. Microeng.
,
15
(
2
), pp.
245
253
.10.1088/0960-1317/15/2/001
4.
Chen
,
S. T.
,
Yang
,
H. Y.
, and
Du
,
C. W.
,
2009
, “
Study of an Ultrafine W-EDM Technique
,”
J. Micromech. Microeng.
,
19
, pp.
1
8
.
5.
AGIE Ltd., Wire-Cut EDM web page http://www.agie.com/english/index_e.html
6.
CHARMILLIES Ltd., Wire-Cut EDM web page http://www.charmilles.com/en/prod_wire.shtml
7.
SODICK, Inc., Wire EDM web page http://www.sodick.com/Products/all_edm.htm
8.
FANUC Ltd., Wire-cut EDM web page http://www.fanucsa.co.za/RoboCut.htm
9.
Tao
,
J.
,
Jun
,
N.
, and
Albert
,
J. S.
,
2008
, “
Modeling of the Anode Crater Formation in Electrical Discharge Machining
,”
ASME J. Manuf. Sci. Eng.
,
134
, p.
011002
.10.1115/1.4005303
10.
Dhanik
,
S.
, and
Joshi
,
S. S.
,
2005
, “
Modeling of a Single Resistance Capacitance Pulse Discharge in Micro-Electro Discharge Machining
,”
ASME J. Manuf. Sci. Eng.
,
127
, pp.
759
767
.10.1115/1.2034512
11.
Wang
,
W. M.
, and
Rajurkar
,
K. P.
,
1994
,
Adaptive Control of WEDM by On-Line Identifying Workpiece Height
,”
Trans. NAMRI/SME
,
XXI
, pp.
73
78
.
12.
Rajurkar
,
K. P.
,
Wang
,
W. M.
, and
Zhao
,
W. S.
,
1997
, “
WEDM-adaptive Control With a Multiple Input Model for Identification of Workpiece Height
,”
Ann. CIRP
,
46
(
1
), pp.
147
150
.10.1016/S0007-8506(07)60795-1
13.
Wang
,
W. M.
, and
Rajurkar
,
K. P.
,
1993
, “
On-Line Identification of Spark Distribution Length in WEDM
,”
Trans. NAMRI/SME
,
XXI
, pp.
133
138
.
14.
Dekeyser
,
W. L.
, and
Snoeys
,
R.
,
1989
, “
Geometrical Accuracy of Wire-EDM
,”
International Symposium ElectroMach.(ISEM-9)
, pp.
226
232
.
15.
Dauw
,
D. F.
, and
Beltrami
,
E. T. H. I.
,
1994
,
”High Precision Wire EDM by On-Line Wire Position Control,”
Ann. CIRP
,
41
, pp.
193
197
.10.1016/S0007-8506(07)62194-5
16.
Hsue
,
W. J.
,
Liao
,
Y. S.
, and
Lu
,
S. S.
,
1999
, “
A Study of Corner Strategy of Wire-EDM Based on Quantitative MRR Analysis
,”
Int. J. Electr. Mach.
,
4
,
33
39
.
17.
Magara
,
T.
,
Yatomi
,
T.
,
Yamada
,
H.
, and
Kobayashi
,
K.
,
1991
, “
Study on Machining Accuracy in Wire-EDM Part I: Improvement of Machining Accuracy of Corner Parts in Rough-Cutting
,”
J. Jpn. Soc. Electr. Mach.
,
25
(
49
), pp.
23
32
.10.2526/jseme.25.23
18.
Morishitam
,
H.
,
Terada
,
Y.
,
Tomisawa
,
M.
,
Kikuiama
,
Y.
,
1992
, “
Wire Cut Electric Discharge Machining Apparatus
,” U.S. Patent No. 5,166,490.
19.
Morishita
,
H.
,
Terada
,
Y.
,
Tsurumoto
,
K.
, and
Ito
,
A.
,
1993
, “
Wire Cut Electrical Discharge Machine
,” U.S. Patent No. 5,216,217.
20.
Obara
,
H.
, and
Izumiya
,
S.
,
1991
, “
Apparatus for Wire Tension Control and Disconnection Detection
,” U.S. Patent No. 5,039,834.
21.
Kinoshita
,
H.
, and
Hayashi
,
Y.
,
1996
, “
Study in Micro Wire EDM
,”
EDM Technol.
,
2
, pp.
24
29
.
22.
Ebler
,
N. A.
,
Michaelis
,
G.
,
Arnason
,
R.
, and
D'Sa
,
N.
,
1993
, “
Tension Control: Dancer Rolls or Load Cells
,”
IEEE Trans. Ind. Appl.
,
29
(
4
), pp.
727
739
.10.1109/28.231986
23.
Yan
,
M. T.
, and
Huang
,
P. H.
,
2004
, “
Accuracy Improvement of Wire-EDM by Real-time Wire Tension Control
,”
Int. J. Mach. Tools Manuf.
,
44
, pp.
807
814
.10.1016/j.ijmachtools.2004.01.019
24.
Yan
,
M. T.
, and
Fang
,
C. C.
,
2008
, “
Application of Genetic Algorithm Based Fuzzy Logic Control in Wire Transport System of Wire-EDM Machine
,”
J. Mater. Process. Technol.
,
205
(
1–3
), pp.
128
137
.10.1016/j.jmatprotec.2007.11.091
You do not currently have access to this content.