Low-adhesive superhydrophobic and superamphiphobic (both superhydrophobic and superoleophobic) surfaces with a liquid contact angle larger than 150 deg and rolling angle less than 10 deg have attracted great interest for fundamental research and potential application. However, the existing methods to fabricate the aforementioned surfaces are contaminative, dangerous, expensive, and time-consuming. Low-adhesive superhydrophobic surfaces on aluminum substrates and steel substrates were fabricated via electrochemical etching method and electrochemical deposition method, respectively. Low-adhesive superamphiphobic surfaces on magnesium alloy substrates were fabricated via one-step electrochemical etching method. The sample surfaces were investigated using electron microscopy, energy-dispersive X-ray spectroscopy (EDS), Fourier-transform infrared spectrophotometry (FTIR), X-ray diffraction (XRD), optical contact angle measurements, and digital roughness and microhardness measurements. The SEM results show that the hierarchical rough structures composed of micrometer-scale pits, protrusions, rectangular-shaped plateaus, and smaller step-like structures and particles are present on the aluminum surfaces after electrochemical etching; meanwhile, the hierarchical micro/nanometer-scale rough structures composed of micrometer-scale globular structures and nanometer-scale SiO2 particles are present on the steel surfaces. After being modified with a low surface energy material, superhydrophobic surfaces on aluminum substrates with 167.0 deg water contact angle and 2 deg rolling angle and superhydrophobic surfaces on steel substrates with 172.9 deg water contact angle and 1 deg rolling angle are obtained. For magnesium alloy, the hierarchical micro/nanometer-scale rough structures composed of micrometer-scale, grain-like structures, protrusions, pits, globular structures, lump-like structures, and nanometer-scale sheets and needles are present on the magnesium alloy surfaces. After obtaining the hierarchical micro/nanometer-scale rough structures, the magnesium alloy surfaces directly show a superamphiphobicity without any chemical modification. The hierarchical rough structures are essential to fabricate superhydrophobic surfaces. In addition, the re-entrant structures are important to fabricate superamphiphobic surfaces. Furthermore, the proposed electrochemical machining method is simple, economic, and highly effective.

References

References
1.
Fürstner
,
R.
,
Barthlott
,
W.
,
Neinhuis
,
C.
, and
Walzel
,
P.
,
2005
, “
Wetting and Self-Cleaning Properties of Artificial Superhydrophobic Surfaces
,”
Langmuir
,
21
(
3
), pp.
956
961
.10.1021/la0401011
2.
Nouri
,
N. M.
,
Sekhavat
,
S.
, and
Mofidi
,
A.
,
2012
, “
Drag Reduction in a Turbulent Channel Flow With Hydrophobic Wall
,”
J. Hydrodynam.
,
24
(
3
), pp.
458
466
.10.1016/S1001-6058(11)60267-9
3.
Boinovich
,
L. B.
,
Gnedenkov
,
S. V.
,
Alpysbaeva
,
D. A.
,
Egorkin
, V
. S.
,
Emelyanenko
,
A. M.
,
Sinebryukhov
,
S. L.
, and
Zaretskaya
,
A. K.
,
2012
, “
Corrosion Resistance of Composite Coatings on Low-Carbon Steel Containing Hydrophobic and Superhydrophobic Layers in Combination With Oxide Sublayers
,”
Corros. Sci.
,
55
, pp.
238
245
.10.1016/j.corsci.2011.10.023
4.
Antonini
,
C.
,
Innocenti
,
M.
,
Horn
,
T.
,
Marengo
,
M.
, and
Amirfazli
,
A.
,
2011
, “
Understanding the Effect of Superhydrophobic Coatings on Energy Reduction in Anti-icing Systems
,”
Cold Regions Sci. Technol.
,
67
(
1-2
), pp.
58
67
.10.1016/j.coldregions.2011.02.006
5.
Barthlott
,
W.
, and
Neinhuis
,
C.
,
1997
, “
Purity of the Sacred Lotus, or Escape From Contamination in Biological Surfaces
,”
Planta
,
202
(
1
), pp.
1
8
.10.1007/s004250050096
6.
Feng
,
L.
,
Li
,
S. H.
,
Li
,
Y. S.
,
Li
,
H. J.
,
Zhang
,
L. J.
,
Zhai
,
J.
,
Song
,
Y. L.
,
Liu
,
B. Q.
,
Jiang
,
L.
, and
Zhu
,
D. B.
,
2002
, “
Super-Hydrophobic Surfaces: From Natural to Artificial
,”
Adv. Mater.
,
14
(
24
), pp.
1857
1860
.10.1002/adma.200290020
7.
Wu
,
W. C.
,
Wang
,
X. L.
,
Wang
,
D. A.
,
Chen
,
M.
,
Zhou
,
F.
,
Liu
,
W. M.
, and
Xue
,
Q. J.
,
2009
, “
Alumina Nanowire Forests via Unconventional Anodization and Super-Repellency Plus Low Adhesion to Diverse Liquids
,”
Chem. Commun.
,
9
, pp.
1043
1045
.10.1039/b818633b
8.
Yin
,
L.
,
Wang
,
Y. Y.
,
Ding
,
J. F.
,
Wang
,
Q. J.
, and
Chen
,
Q. M.
,
2012
, “
Water Condensation on Superhydrophobic Aluminum Surfaces With Different Low-Surface-Energy Coatings
,”
Appl. Surf. Sci.
,
258
(
8
), pp.
4063
4068
.10.1016/j.apsusc.2011.12.100
9.
Li
,
J.
,
Yang
,
Y. X.
,
Zha
,
F.
, and
Lei
,
Z. Q.
,
2012
, “
Facile Fabrication of Superhydrophobic ZnO Surfaces From High to Low Water Adhesion
,”
Mater. Lett.
,
75
(
15
), pp.
71
73
.10.1016/j.matlet.2012.01.139
10.
Lee
,
S. M.
,
Kim
,
K. S.
,
Pippel
,
E.
,
Kim
,
S.
,
Kim
,
J. H.
, and
Lee
,
H. J.
,
2012
, “
Facile Route Toward Mechanically Stable Superhydrophobic Copper Using Oxidation-Reduction Induced Morphology Changes
,”
J. Phys. Chem. C
,
116
(
4
), pp.
2781
2790
.10.1021/jp2109626
11.
Fadeeva
,
E.
,
Truong
, V
. K.
,
Stiesch
,
M.
,
Chichkov
,
B. N.
,
Crawford
,
R. J.
,
Wang
,
J.
, and
Ivanova
,
E. P.
,
2011
, “
Bacterial Retention on Superhydrophobic Titanium Surfaces Fabricated by Femtosecond Laser Ablation
,”
Langmuir
,
27
(
6
), pp.
3012
3019
.10.1021/la104607g
12.
Brusilovski
,
A.
,
2010
, “
Dielectric Coating of Cathodes for Microfabrication Using Electrochemical Method
,”
ASME J. Manuf. Sci. Eng.
,
132
(
6
), p.
064505
.10.1115/1.4003123
13.
Harrison
, I
. S.
,
Kurfess
,
T. R.
,
Oles
,
E. J.
, and
Singh
,
P. M.
,
2007
, “
Inspection of White Layer in Hard Turned Components Using Electrochemical Methods
,”
ASME J. Manuf. Sci. Eng.
,
129
(
2
), pp.
447
452
.10.1115/1.2540655
14.
Shi
,
Z.
, and
Malkin
,
S.
,
2006
, “
Wear of Electroplated CBN Grinding Wheels
,”
ASME J. Manuf. Sci. Eng.
,
128
(
1
), pp.
110
118
.10.1115/1.2122987
15.
Upadhyaya
,
R. P.
, and
Malkin
,
S.
,
2004
, “
Thermal Aspects of Grinding With Electroplated CBN Wheels
,”
ASME J. Manuf. Sci. Eng.
,
126
(
1
), pp.
107
114
.10.1115/1.1644547
16.
Young
,
T.
,
1805
, “
An Essay on the Cohesion of Fluids
,”
Philos. Trans. R. Soc. London
,
95
, pp.
65
87
.10.1098/rstl.1805.0005
17.
Li
,
D.
, and
Neumann
,
A. W.
,
1992
, “
Equation of State for Interfacial Tensions of Solid-Liquid Systems
,”
Adv. Colloid Interface Sci.
,
39
(
6
), pp.
299
345
.10.1016/0001-8686(92)80064-5
18.
Wenzel
,
R. N.
,
1936
, “
Resistance of Solid Surfaces to Wetting by Water
,”
Ind. Eng. Chem.
,
28
(
8
), pp.
988
994
.10.1021/ie50320a024
19.
Cassie
,
A. B. D.
, and
Baxter
,
S.
,
1944
, “
Wettability of Porous Surfaces
,”
Trans. Faraday Soc.
,
40
, pp.
546
551
.10.1039/tf9444000546
20.
Xu
,
W. J.
,
Song
,
J. L.
,
Liu
,
X.
,
Sun
,
J.
, and
Lu
,
Y.
,
2012
, “
Electrochemical Machining of Large-Area Superhydrophobic Al Surfaces
,”
Mater. Sci. Technol.
,
20
(
2
), pp.
52
60
.
21.
Xu
,
W. J.
,
Zhao
,
Y.
,
Sun
,
J.
,
Hu
,
K.
, and
Song
,
J. L.
,
2013
, “
Experimental Study of Super-Hydrophobic Surfaces Obtained on Steel Matrix by Brush Plating Technique
,”
China Mech. Eng.
,
24
(
1
), pp.
1
5
.
22.
Song
,
J. L.
,
Xu
,
W. J.
,
Liu
,
X.
,
Lu
,
Y.
,
Wei
,
Z. F.
, and
Wu
,
L. B.
,
2012
, “
Ultrafast Fabrication of Rough Structures Required by Superhydrophobic Surfaces on Al Substrates Using an Immersion Method
,”
Chem. Eng. J.
,
211-212
(
15
), pp.
143
152
.10.1016/j.cej.2012.09.094
23.
Song
,
J. L.
,
Xu
,
W. J.
,
Liu
,
X.
,
Lu
,
Y.
, and
Sun
,
J.
,
2012
, “
Electrochemical Machining of Superhydrophobic Al Surfaces and Effect of Processing Parameters on Wettability
,”
Appl. Phys. A
,
108
(
3
), pp.
559
568
.10.1007/s00339-012-6927-1
24.
Li
,
Y. F.
,
Yu
,
Z. J.
,
Yu
,
Y. F.
,
Huo
,
S. B.
, and
Song
,
S. P.
,
2008
, “
Fabrication of Superhydrophobic Surfaces on Aluminum Alloy
,”
J. Chem. Eng. Chin. Univ.
,
22
(
1
), pp.
6
10
.10.1016/S1005-9040(06)60033-0
25.
Rumyantsev
,
E.
, and
Davydov
,
A.
,
1989
,
Electrochemical Machining of Metals
,
MIR
,
Moscow
, Chap. 2.
26.
Zhu
,
X. T.
,
Zhang
,
Z. Z.
,
Men
,
X. H.
,
Yang
,
J.
,
Wang
,
K.
,
Xu
,
X. H.
,
Zhou
,
X. Y.
, and
Xue
,
Q. J.
,
2011
, “
Robust Superhydrophobic Surfaces With Mechanical Durability and Easy Repairability
,”
J. Mater. Chem.
,
21
(
39
), pp.
15793
15797
.10.1039/c1jm12513c
27.
Zhu
,
X. T.
,
Zhang
,
Z. Z.
,
Xu
,
X. H.
,
Men
,
X. H.
,
Yang
,
J.
,
Zhou
,
X. Y.
, and
Xue
,
Q. J.
,
2012
, “
Facile Fabrication of a Superamphiphobic Surface on the Copper Substrate
,”
J. Colloid Interface Sci.
,
367
(
1
), pp.
443
449
.10.1016/j.jcis.2011.10.008
28.
Tuteja
,
A.
,
Choi
,
W.
,
Ma
,
M. L.
,
Mabry
,
J. M.
,
Mazzella
,
S. A.
,
Rutledge
,
G. C.
,
Mckinley
,
G. H.
, and
Cohen
,
R. E.
,
2007
, “
Designing Superoleophobic Surfaces
,”
Science
,
318
(
5856
), pp.
1618
1622
.10.1126/science.1148326
29.
Tuteja
,
A.
,
Choi
,
W.
,
Mabry
,
J. M.
,
Mckinley
,
G. H.
, and
Cohen
,
R. E.
,
2008
, “
Robust Omniphobic Surfaces
,”
Proc. Natl. Acad. Sci. U.S.A.
,
105
(
47
), pp.
18200
18205
.10.1073/pnas.0804872105
30.
Tuteja
,
A.
,
Choi
,
W.
,
Mckinley
,
G. H.
,
Cohen
,
R. E.
, and
Rubner
,
M. F.
,
2008
, “
Design Parameters for Superhydrophobicity and Superoleophobicity
,”
MRS Bull.
,
33
(
8
), pp.
752
758
.10.1557/mrs2008.161
You do not currently have access to this content.