Hot embossing replica are characterized by the quality of the molded structures and the uniformity of the residual layer. In particular, the even distribution of the residual layer thickness (RLT) is an important issue in hot embossing and the related process of thermal nanoimprint lithography, as variations in the RLT may affect the functionality or further processing of replicated parts. In this context, the paper presents an experimental and simulation study on the influence of three process factors, namely the molding temperature, the embossing force, and the holding time, on the residual layer homogeneity achieved when processing 2 mm thick PMMA sheets with hot embossing. The uniformity of the RLT was assessed for different experimental conditions by calculating the standard deviation of thickness measurements at different set locations over the surface of each embossed sample. It was observed that the selected values of the studied parameters have an effect on the resulting RLT of the PMMA replica. In particular, the difference between the largest and lowest RLT standard deviation between samples was 18 μm, which was higher than the accuracy of the instrument used to carry out the thickness measurements. In addition, the comparison between the obtained experimental and simulation results suggests that approximately 12% of the RLT uniformity was affected by the local deflections of the mold. Besides, polymer expansion after release of the embossing load was estimated to contribute to 8% of the RLT nonuniformity. It is essential to understand the effects of the process parameters on the resulting homogeneity of the residual layer in hot embossing. In this research, the best RLT uniformity could be reached by using the highest considered settings for the temperature and holding time and the lowest studied value of embossing force. Finally, the analysis of the obtained results also shows that, across the range of processing values studied, the considered three parameters have a relatively equal influence on the RLT distribution. However, when examining narrower ranges of processing values, it is apparent that the most influential process parameter depends on the levels considered. In particular, the holding time had the most effect on the RLT uniformity when embossing with the lower values of process parameters while, with higher processing settings, the molding temperature became the most influential factor.

References

References
1.
Saile
,
V.
,
2009
, “
Introduction: LIGA and its Applications
,”
Adv. Micro Nanosyst.
,
7
, pp.
1
10
.
2.
Dornfeld
,
D.
,
Min
,
S.
, and
Takeuchi
,
Y.
,
2006
, “
Recent Advances in Mechanical Micro Machining
,”
CIRP Ann.
,
55
(
2
), pp.
745
768
.10.1016/j.cirp.2006.10.006
3.
Rizvi
,
N. H.
, and
Apte
,
P.
,
2002
, “
Developments in Laser Micro-Machining Techniques
,”
J. Mater. Process. Technol.
,
127
(
2
), pp.
206
210
.10.1016/S0924-0136(02)00143-7
4.
Griffiths
,
C.
,
Dimov
,
S.
,
Scholz
,
S.
,
Hirshy
,
H.
, and
Tosello
,
G.
,
2011
, “
Process Factors Influence on Cavity Pressure Behaviour in Microinjection Moulding
,”
ASME J. Manuf. Sci. Eng.
,
133
(
3
), p.
0310071
.10.1115/1.4003953
5.
Worgull
,
M.
,
2009
,
Hot Embossing: Theory and Technology of Microreplication
,
Elsevier
,
New York
.
6.
Chou
,
S. Y.
,
Krauss
,
P. R.
, and
Renstrom
,
P. J.
,
1995
, “
Imprint of Sub 25 nm Vias and Trenches in Polymers
,”
Appl. Phys. Lett.
,
67
(
21
), pp.
3114
3116
.10.1063/1.114851
7.
Heckele
,
M.
, and
Schomburg
,
W. K.
,
2004
, “
Review on Micro Molding of Thermoplastic Polymers
,”
J. Micromech. Microeng.
,
14
, pp.
R1
R14
.10.1088/0960-1317/14/3/R01
8.
Yong
,
H.
,
Jian-Zhong
,
F.
, and
Zi-Chen
,
C.
,
2007
, “
Research on Optimization of the Hot Embossing Process
,”
J. Micromech. Microeng.
,
17
(
12
), pp.
2420
2425
.10.1088/0960-1317/17/12/005
9.
Becker
,
H.
, and
Heim
,
U.
,
2000
, “
Hot Embossing as a Method for the Fabrication of Polymer High Aspect Ratio Structures
,”
Sens. Actuators
, A,
83
(
1–3
), pp.
130
135
.10.1016/S0924-4247(00)00296-X
10.
Cui
,
B.
, and
Veres
,
T.
,
2006
, “
Pattern Replication of 100 nm to Millimeter-Scale Features by Thermal Nanoimprint Lithography
,”
Microelectron. Eng.
,
83
(
4–9
), pp.
902
905
.10.1016/j.mee.2006.01.013
11.
Heckele
,
M.
,
Gerlach
,
A.
,
Guber
,
A.
, and
Schaller
,
T.
,
2001
, “
Large Area Polymer Replication for Microstructured Fluidic Devices
,”
Proc. SPIE
,
4408
, pp.
469
476
.10.1117/12.425380
12.
McGeough
,
J.
,
2002
,
Micromachining of Engineering Materials
,
Marcel Dekker
,
New York
, Chap. 4.
13.
Chang
,
J.-H.
, and
Yang
,
S.-Y.
,
2003
, “
Gas Pressurized Hot Embossing for Transcription of Micro-Features
,”
Microsyst. Technol.
,
10
(
1
), pp.
76
80
.10.1007/s00542-003-0311-1
14.
Hocheng
,
H.
, and
Wen
,
T. T.
,
2008
, “
Innovative Approach to Uniform Imprint of Micron and Submicron Features
,”
J. Achiev. Mater. Manuf. Eng.
,
28
(
1
), pp.
79
82
.
15.
Gao
,
H.
,
Tan
,
H.
,
Zhang
,
W.
,
Morton
,
K.
, and
Chou
,
S. Y.
,
2006
, “
Air Cushion Press for Excellent Uniformity, High Yield, and Fast Nanoimprint Across a 100 mm Field
,”
Nano Lett.
,
6
(
11
), pp.
2438
2441
.10.1021/nl0615118
16.
Lazzarino
,
F.
,
Gourgon
,
C.
,
Schiavone
,
P.
, and
Perret
,
C.
,
2004
, “
Mold Deformation in Nano Imprint Lithography
,”
J. Vac. Sci. Technol. B
,
22
(
6
), pp.
3318
3323
.10.1116/1.1815299
17.
Sirotkin
, V
.
,
Svintsov
,
A.
,
Schift
,
H.
, and
Zaitsev
,
S.
,
2007
, “
Coarse-Grain Method for Modelling of Stamp and Substrate Deformation in Nanoimprint
,”
Microelectron. Eng.
,
84
(
5–8
), pp.
868
871
.10.1016/j.mee.2007.01.007
18.
Merino
,
S.
,
Retolaza
,
A.
,
Juarros
,
A.
, and
Schift
,
H.
,
2008
, “
The Influence of Stamp Deformation on Residual Layer Homogeneity in Thermal Nanoimprint Lithography
,”
Microelectron. Eng.
,
85
(
9
), pp.
1892
1896
.10.1016/j.mee.2008.06.011
19.
He
,
Y.
,
Fu
,
J.-Z.
, and
Chen
,
Z.-C.
,
2008
, “
Optimization of Control Parameters in Micro Hot Embossing
,”
Microsyst. Technol.
,
14
(
3
), pp.
325
329
.10.1007/s00542-007-0497-8
20.
Mehne
,
Ch.
,
2007
, “
Großformatige Abformung mikrostrukturierter Formeinsätze durch Heißpräqen
,” Ph.D. thesis, University of Karlsruhe, Institute for Microstructure Technology, Karlsruhe, Germany.
21.
Shan
,
X. C.
,
Liu
,
Y. C.
, and
Lam
,
Y. C.
,
2008
, “
Studies of Polymer Deformation and Recovery in Micro Hot Embossing
,”
Microsyst. Technol.
,
14
(
7
), pp.
1055
1060
.10.1007/s00542-007-0486-y
22.
Lin
,
C.-R.
,
Chen
,
R.-H.
, and
Hung
,
C.
,
2003
, “
Preventing Non-Uniform Shrinkage in Open-Die Hot Embossing of PMMA Microstructures
,”
J. Mater. Process. Technol.
,
140
(
1
), pp.
173
178
.10.1016/S0924-0136(03)00709-X
23.
Jenoptik Mikrotechnik
,
2002
, “
Datasheet of HEX03 Hot Embossing System
,” Jenoptik Mikrotechnik, Jena, Germany.
24.
Simprint Nanotechnologies Ltd.
,
2012
, “Simprint Nanotechnologies,” Bristol, http://simprintnanotech.com
25.
Velkova
, V
.
,
Lalev
,
G.
,
Hirshy
,
H.
,
Scholz
,
S.
,
Hiitola-Keinänen
,
J.
,
Gold
,
H.
,
Haase
,
A.
,
Hast
,
J.
,
Stadlober
,
B.
, and
Dimov
,
S.
,
2010
, “
Design and Validation of a Novel Master-Making Process Chain for Organic and Large Area Electronics on Flexible Substrates
,”
Microelectron. Eng.
,
87
(
11
), pp.
2139
2145
.10.1016/j.mee.2010.01.015
26.
Hirshy
,
H.
,
Lalev
,
G.
,
Velkova
, V
. L.
,
Popov
,
K.
,
Scholz
,
S.
, and
Dimov
,
S. S.
,
2011
, “
Master Tool Fabrication for the Replication of Micro and Nano Features
,”
Proceedings of the 8th International Conference on Multi-Material Micro Manufacture, 4M2011, Stuttgart
,
Germany
, Nov. 8–10, pp.
317
320
.
27.
Lalev
,
G.
,
Petkov
,
P.
,
Sykes
,
N.
,
Hirshy
,
H.
,
Velkova
, V
.
,
Dimov
,
S. S.
, and
Barrow
,
D. A.
,
2009
, “
Fabrication and Validation of Fused Silica NIL Templates Incorporating Different Length Scale Features
,”
Micorelectron. Eng.
,
86
(
4–6
), pp.
705
708
.10.1016/j.mee.2009.01.074
28.
Li
,
W.
,
Dimov
,
S.
, and
Lalev
,
G.
,
2007
, “
Focused-Ion Beam Direct Structuring of Fused Silica for Fabrication of Nano-Imprinting Templates
,”
Microelectron. Eng.
,
84
(
5–8
), pp.
829
832
.10.1016/j.mee.2007.01.013
29.
McGeough
,
J. A.
,
Leu
,
M. C.
,
Rajurkar
,
K. P.
,
De Silva
,
A. K. M.
, and
Liu
,
Q.
,
2001
, “
Electroforming Process and Application to Micro/Macro Manufacturing
,”
CIRP Ann.
,
50
(
2
), pp.
499
514
.10.1016/S0007-8506(07)62990-4
30.
Ng.
,
S. H.
,
Tjeung
,
R. T.
, and
Wang
,
Z.
,
2006
, “
Hot Embossing on Polymethyl Methacrylate
,”
Proceedings of the 8th IEEE Electronics Packaging Technology Conference, EPTC’06
,
Singapore
, Dec. 6–8, pp.
615
621
.
31.
Toh
,
A. G.
,
Wang
,
Z. F.
, and
Wang
,
Z. P.
,
2009
, “
Ambient Hot Embossing of Polycarbonate, Poly-Methyl Methacrylate and Cyclic Olefin Copolymer for Microfluidic Applications
,”
Proceedings of the IEEE Symposium on Design, Test, Integration & Packaging of MEMS/MOEMS
,
Singapore
, Apr. 1–3, pp.
359
362
.
32.
Matbase VOF
,
2003
, “Material Properties Database,” Matbase VOF, Delft, http://www.matbase.com/material/polymers/commodity/pmma/properties
33.
Ng
,
S. H.
,
Wang
,
Z. F.
,
Tjeung
,
R. T.
, and
de Rooij
,
N. F.
,
2006
, “
Process Issues for a Multi-Layer Microelectrofluidic Platform
,”
Proceedings of the Symposium on Design, Test, Integration and Packaging of MEMS/MOEMS, DTIP 2006
,
Stresa, Italy
, Apr. 26–28.
34.
Scheer
,
H.-C.
, and
Schulz
,
H.
,
2001
, “
A Contribution to the Flow Behaviour of Thin Polymer Films During Hot Embossing Lithography
,”
Microelectron. Eng.
,
56
(
3–4
), pp.
311
332
.10.1016/S0167-9317(01)00569-X
35.
Schelb
,
M.
,
Vannahme
,
C.
,
Kolew
,
A.
, and
Mappes
,
T.
,
2011
, “
Hot Embossing of Photonic Crystal Polymer Structures with a High Aspect Ratio
,”
J. Micromech. Microeng.
,
21
(
2
), pp.
1
5
.10.1088/0960-1317/21/2/025017
36.
Luo
,
Y.
,
Xu
,
M.
,
Wang
,
X. D.
, and
Liu
,
C.
,
2006
, “
Finite Element Analysis of PMMA Microfluidic Chip Based on Hot Embossing Technique
,”
J. Phys.: Conf. Ser.
,
48
, pp.
1102
1106
.10.1088/1742-6596/48/1/205
37.
Taylor
,
H.
,
Lam
,
Y. C.
, and
Boning
,
D.
,
2009
, “
A Computationally Simple Method for Simulating the Micro-Embossing of Thermoplastic Layers
,”
J. Micromech. Microeng.
,
19
(
7
),
075007
.10.1088/0960-1317/19/7/075007
38.
Mitutoyo
,
2004
, “Quick Vision Accel – CNC Vision Measuring System,” http://www.mitutoyo.com/pdf/QV%20Accel%201759.pdf
39.
Spetzler
,
H. A.
, and
Meyer
,
M. D.
,
1974
, “
Precise Length Measurement Technique under Hydrostatic Pressure: Isothermal Bulk Modulus of PMMA
,”
Rev. Sci. Instrum.
,
45
(
7
), pp.
911
915
.10.1063/1.1686766
You do not currently have access to this content.