This work describes the centrifugal casting and fast curing of double-sided, polydimethylsiloxane (PDMS)-based components with microfeatures. Centrifugal casting permits simultaneous patterning of multiple sides of a component and allows control of the thickness of the part in an enclosed mold without entrapment of bubbles. Spinning molds filled with PDMS at thousands of revolutions per minute for several minutes causes entrapped bubbles within the PDMS to migrate toward the axis of rotation or dissolve into solution. To cure the parts quickly (<10 min), active elements heat and cool cavities filled with PDMS after the completion of spinning. Microfluidic channels produced from the process have a low coefficient of variation (<2% for the height and width of channels measured in 20 parts). This process is also capable of molding functional channels in opposite sides of a part as demonstrated through a device with a system of valves typical to multilayer soft lithography.

References

References
1.
Whitesides
,
G. M.
,
2006
, “
The Origins and the Future of Microfluidics
,”
Nature
,
442
(
7101
), pp.
368
373
.10.1038/nature05058
2.
Becker
,
H.
,
2009
, “
Chips, Money, Industry, Education and the ‘Killer Application
’,”
Lab Chip
,
9
(
12
), pp.
1659
1660
.10.1039/b909379f
3.
Mazzeo
,
A. D.
,
2009
, “
Centrifugal Casting and Fast Curing of Polydimethylsiloxane (PDMS) for the Manufacture of Micro and Nano Featured Components
,” Ph.D. thesis, Massachusetts Institute of Technology, Cambrige, MA.
4.
Mazzeo
,
A. D.
,
Lustrino
,
M. E.
, and
Hardt
,
D. E.
,
2012
, “
Bubble Removal in Centrifugal Casting: Combined Effects of Buoyancy and Diffusion
,”
Polym. Eng. Sci.
,
52
(
1
), pp.
80
90
.10.1002/pen.22049
5.
McDonald
,
J. C.
, and
Whitesides
,
G. M.
,
2002
, “
Poly(dimethylsiloxane) as a Material for Fabricating Microfluidic Devices
,”
Accounts Chem. Res.
,
35
(
7
), pp.
491
499
.10.1021/ar010110q
6.
Sia
,
S. K.
, and
Whitesides
,
G. M.
,
2003
, “
Microfluidic Devices Fabricated in Poly(dimethylsiloxane) for Biological Studies
,”
Electrophoresis
,
24
(
21
), pp.
3563
3576
.10.1002/elps.200305584
7.
Gates
,
B. D.
, and
Whitesides
,
G. M.
,
2003
, “
Replication of Vertical Features Smaller Than 2 nm by Soft Lithography
,”
J. Am. Chem. Soc.
,
125
(
49
), pp.
14986
14987
.10.1021/ja0367647
8.
Xia
,
Y.
,
McClelland
,
J. J.
,
Gupta
,
R.
,
Qin
,
D.
,
Zhao
,
X. M.
,
Sohn
,
L. L.
,
Celotta
,
R. J.
, and
Whitesides
,
G. M.
,
1997
, “
Replica Molding Using Polymeric Materials: A Practical Step Toward Nanomanufacturing
,”
Adv. Mater.
,
9
(
2
), pp.
147
149
.10.1002/adma.19970090211
9.
Shin
,
Y. S.
,
Cho
,
K.
,
Lim
,
S. H.
,
Chung
,
S.
,
Park
,
S. J.
,
Chung
,
C.
,
Han
,
D. C.
, and
Chang
,
J. K.
,
2003
, “
PDMS-Based Micro PCR Chip With Parylene Coating
,”
J. Micromech. Microeng.
,
13
(
5
), pp.
768
774
.10.1088/0960-1317/13/5/332
10.
Kartalov
,
E. P.
, and
Quake
,
S. R.
,
2004
, “
Microfluidic Device Reads Up to Four Consecutive Base Pairs in DNA Sequencing-by-Synthesis
,”
Nucleic Acid Res.
,
32
(
9
), pp.
2873
2879
.10.1093/nar/gkh613
11.
Tung
,
Y. C.
,
Zhang
,
M.
,
Lin
,
C. T.
,
Kurabayashi
,
K.
, and
Skerlos
,
S. J.
,
2004
, “
PDMS-Based Opto-Fluidic Micro Flow Cytometer With Two-Color, Multi-Angle Fluorescence Detection Capability Using PIN Photodiodes
,”
Sensor Actuator B
,
98
(
2–3
), pp.
356
367
.10.1016/j.snb.2003.10.010
12.
Fu
,
A. Y.
,
Chou
,
H. P.
,
Spence
,
C.
,
Arnold
,
F. H.
, and
Quake
,
S. R.
,
2002
, “
An Integrated Microfabricated Cell Sorter
,”
Anal. Chem.
,
74
(
11
), pp.
2451
2457
.10.1021/ac0255330
13.
Lee
,
H. L.
,
Boccazzi
,
P.
,
Ram
,
R. J.
, and
Sinskey
,
A. J.
,
2006
, “
Microbioreactor Arrays With Integrated Mixers and Fluid Injectors for High-Throughput Experimentation With pH and Dissolved Oxygen Control
,”
Lab Chip
6
(
9
), pp.
1229
1235
.10.1039/b608014f
14.
Kim
,
L.
,
Vahey
,
M. D.
,
Lee
,
H. Y.
, and
Voldman
,
J.
,
2006
, “
Microfluidic Arrays for Logarithmically Perfused Embryonic Stem Cell Culture
,”
Lab Chip
,
6
(
3
), pp.
394
406
.10.1039/b511718f
15.
Eteshola
,
E.
, and
Leckband
,
D.
,
2001
, “
Development and Characterization of an ELISA Assay in PDMS Microfluidic Channels
,”
Sensor. Actuator. B
,
72
(
2
), pp.
129
133
.10.1016/S0925-4005(00)00640-7
16.
Shah
,
K.
,
Shin
,
W. C.
, and
Besser
,
R. S.
,
2004
, “
A PDMS Micro Proton Exchange Membrane Fuel Cell by Conventional and Non-Conventional Microfabrication Techniques
,”
Sensor. Actuator. B
,
97
(
2–3
), pp.
157
167
.10.1016/j.snb.2003.08.008
17.
Xia
,
Y.
,
Tien
,
J.
,
Qin
,
D.
, and
Whitesides
,
G. M.
,
1996
, “
Non-Photolithographic Methods for Fabrication of Elastomeric Stamps for Use in Microcontact Printing
,”
Langmuir
,
12
(
16
), pp.
4033
4038
.10.1021/la960387c
18.
Xia
,
Y.
, and
Whitesides
,
G. M.
,
1998
, “
Soft Lithography
,”
Ann. Rev. Mater. Sci.
,
28
(
1
), pp.
153
184
.10.1146/annurev.matsci.28.1.153
19.
Vozzi
,
G.
,
Flaim
,
C.
,
Ahluwalia
,
A.
, and
Bhatia
,
S.
,
2003
, “
Fabrication of PLGA Scaffolds Using Soft Lithography and Microsyringe Deposition
,”
Biomaterials
,
24
(
14
), pp.
2533
2540
.10.1016/S0142-9612(03)00052-8
20.
Rowell
,
M. W.
,
Topinka
,
M. A.
,
McGehee
,
M. D.
,
Prall
,
H. J.
,
Dennler
,
G.
,
Sariciftci
,
N. S.
,
Hu
,
L.
, and
Gruner
,
G.
,
2006
, “
Organic Solar Cells With Carbon Nanotube Network Electrodes
,”
Appl. Phys. Lett.
,
88
,
p
. 233506.10.1063/1.2209887
21.
Klemic
,
K. G.
,
Klemic
,
J. F.
, and
Sigworth
,
F. J.
,
2005
, “
An Air-Molding Technique for Fabricating PDMS Planar Patch-Clamp Electrodes
,”
Eur. J. Physiol.
,
449
(
6
), pp.
564
572
.10.1007/s00424-004-1360-8
22.
Zhang
,
J.
,
Chan-Park
,
M. B.
, and
Conner
,
S. R.
,
2004
, “
Effect of Exposure Dose on the Replication Fidelity and Profile of Very High Aspect Ratio Microchannels in SU-8
,”
Lab Chip
,
4
, pp.
646
653
.10.1039/b403304c
23.
Jo
,
B. H.
,
Van Lerberghe
,
L. M.
,
Motsegood
,
K. M.
, and
Beebe
,
D. J.
,
2000
, “
Three-Dimensional Micro-Channel Fabrication in Polydimethylsiloxane (PDMS) Elastomer
,”
J. Microelect. Syst.
,
9
, pp.
76
81
.10.1109/84.825780
24.
O'Neill
,
A.
,
Soo Hoo
,
J.
, and
Walker
,
G.
,
2006
, “
Rapid Curing of PDMS for Microfluidic Applications
.” Available at http://blogs.rsc.org/chipsandtips/2006/10/23/rapid-curing-of-pdms-for-microfluidic-applications/.
25.
Kumar
,
A.
,
Biebuyck
,
H. A.
, and
Whitesides
,
G. M.
,
1994
, “
Patterning Self-Assembled Monolayers: Applications in Materials Science
,”
Langmuir
,
10
(
5
), pp.
1498
1511
.10.1021/la00017a030
26.
Rosenthal
,
A.
,
Macdonald
,
A.
, and
Voldman
,
J.
,
2007
, “
Cell Patterning Chip for Controlling the Stem Cell Microenvironment
,”
Biomaterials
,
28
(
21
), pp.
3208
3216
.10.1016/j.biomaterials.2007.03.023
27.
Kendale
,
A. M.
, and
Trumper
,
D. L.
,
2006
, “
Microcontact Printing
,” U.S. Patent No. 7,117,790 B2.
28.
Kendale
,
A. M.
,
2002
, “
Automation of Soft Lithographic Microcontact Printing
,” Masters thesis, Massachusetts Institute of Technology, Cambridge, MA.
29.
Lucas
,
N.
,
Demming
,
S.
,
Jordan
,
A.
,
Sichler
,
P.
, and
Buttgenbach
,
S.
,
2008
, “
An Improved Method for Double-Sided Moulding of PDMS
,”
J. Micromech. Microeng.
,
18
, p. 075037.10.1088/0960-1317/18/7/075037
30.
Unger
,
M. A.
,
Chou
,
H. P.
,
Thorsen
,
T.
,
Scherer
,
A.
, and
Quake
,
S. R.
,
2000
, “
Monolithic Microfabricated Valves and Pumps by Multilayer Soft Lithography
,”
Science
,
288
(
5463
), pp.
113
116
.10.1126/science.288.5463.113
31.
Thorsen
,
T.
,
Maerki
,
S. J.
, and
Quake
,
S. R.
,
2002
, “
Microfluidic Large-Scale Integration
,”
Science
,
298
(
5593
), pp.
580
584
.10.1126/science.1076996
32.
Henann
,
D. L.
,
Srivastava
,
V.
,
Taylor
,
H. K.
,
Hale
,
M. R.
,
Hardt
,
D. E.
, and
Anand
,
L.
,
2009
. “
Metallic Glasses: Viable Tool Materials for the production of surface microstructures in amorphous polymers by micro-hot-embossing
,”
J. Micromech. Microeng.
,
19
, p.
115030
.10.1088/0960-1317/19/11/115030
33.
Wong
,
E. J.
,
2010
, “
Modeling and Control of Rapid Cure in Polydimethylsiloxane (PDMS) for Microfluidic Device Applications
,” Ph.D. thesis, Massachusetts Institute of Technology, Cambridge, MA.
You do not currently have access to this content.