We show that a commercial microwave oven can be used after growth to increase alignment of carbon nanotubes (CNTs) and reduce their resistance as thermal and electrical interface materials. Forests of multiwall CNTs were grown directly on both sides of aluminum foils by thermal chemical vapor deposition (CVD) and subsequently exposed to a microwave treatment in air. Scanning electron micrographs revealed enhanced vertical alignment of CNTs after postgrowth microwave treatment. The microwave treatment creates an electric field near the CNT growth substrate that aligns the CNTs orthogonally to the growth substrate. Microwaved CNT forests produced increased mechanical stiffness by approximately 58%, and reduced thermal and electrical contact resistances by 44% and 41%, respectively, compared to as-grown forests. These performance changes are attributed to an increase in the real contact area established at the CNT distal ends because of the enhanced forest alignment. This conclusion is consistent with several prior observations in the literature. This work demonstrates a facile method to enhance the alignment of CNTs grown by thermal CVD without the use of in situ plasma or electric field application.

References

References
1.
Terrones
,
M.
,
2003
, “
Science and Technology of the Twenty-First Century: Synthesis, Properties, and Applications of Carbon Nanotubes
,”
Annu. Rev. Mater. Res.
,
33
, pp.
419
501
.10.1146/annurev.matsci.33.012802.100255
2.
Berger
,
C.
,
Yi
,
Y.
,
Wang
,
Z. L.
, and
de Heer
,
W. A.
,
2002
, “
Multiwalled Carbon Nanotubes are Ballistic Conductors at Room Temperature
,”
Appl. Phys. A
,
74
(
3
), pp.
363
365
.10.1007/s003390201279
3.
Pop
,
E.
,
Mann
,
D.
,
Wang
,
Q.
,
Goodson
,
K. E.
, and
Dai
,
H. J.
,
2006
, “
Thermal Conductance of an Individual Single-Wall Carbon Nanotube Above Room Temperature
,”
Nano Lett.
,
6
(
1
), pp.
96
100
.10.1021/nl052145f
4.
Berber
,
S.
,
Kwon
,
Y. K.
, and
Tomanek
,
D.
,
2000
, “
Unusually High Thermal Conductivity of Carbon Nanotubes
,”
Phys. Rev. Lett.
,
84
(
20
), pp.
4613
4616
.10.1103/PhysRevLett.84.4613
5.
Cao
,
A.
,
Dickrell
,
P. L.
,
Sawyer
,
W. G.
,
Ghasemi-Nejhad
,
M. N.
, and
Ajayan
,
P. M.
,
2005
, “
Super-Compressible Foamlike Carbon Nanotube Films
,”
Science
,
310
(
5752
), pp.
1307
1310
.10.1126/science.1118957
6.
Pathak
,
S.
,
Lim
,
E. J.
,
Pour Shahid Saeed Abadi
,
P.
,
Graham
,
S.
,
Cola
,
B. A.
, and
Greer
,
J. R.
,
2012
, “
Higher Recovery and Better Energy Dissipation at Faster Strain Rates in Carbon Nanotube Bundles: An In-Situ Study
,”
ACS Nano
,
6
(
3
), pp.
2189
2197
.10.1021/nn300376j
7.
Pour Shahid Saeed Abadi
,
P.
,
Hutchens
,
S. B.
,
Greer
,
J. R.
,
Cola
,
B. A.
, and
Graham
,
S.
,
2012
, “
Effects of Morphology on the Micro-Compression Response of Carbon Nanotube Forests
,”
Nanoscale
,
4
(
11
), pp.
3373
3380
.10.1039/c2nr30474k
8.
Tong
,
T.
,
Zhao
,
Y.
,
Delzeit
,
L.
,
Kashani
,
A.
,
Meyyappan
,
M.
, and
Majumdar
,
A.
,
2008
, “
Height Independent Compressive Modulus of Vertically Aligned Carbon Nanotube Arrays
,”
Nano Lett.
,
8
(
2
), pp.
511
515
.10.1021/nl072709a
9.
Cola
,
B. A.
,
2010
, “
Carbon Nanotubes as High Performance Thermal Interface Materials
,” Electron. Cooling Mag.,
16
(
1
), pp.
10
15
. Available at: http://www.electronics-cooling.com/2010/04/carbon-nanotubes-as-high-performance-thermal-interface-materials/
10.
Pour Shahid Saeed Abadi
,
P.
,
Leong
,
C. K.
, and
Chung
,
D. D. L.
,
2009
, “
Factors That Govern the Performance of Thermal Interface Materials
,”
J. Electron. Mater.
,
38
(
1
), pp.
175
192
.10.1007/s11664-008-0563-8
11.
Pour Shahid Saeed Abadi
,
P.
, and
Chung
,
D. D. L.
,
2011
, “
Numerical Modeling of the Performance of Thermal Interface Materials in the Form of Paste-Coated Sheets
,”
J. Electron. Mater.
,
40
(
7
), pp.
1490
1500
.10.1007/s11664-011-1630-0
12.
Cola
,
B. A.
,
Xu
,
J.
, and
Fisher
,
T. S.
,
2009
, “
Contact Mechanics and Thermal Conductance of Carbon Nanotube Array Interfaces
,”
Int. J. Heat Mass Transfer
,
52
, pp.
3490
3503
.10.1016/j.ijheatmasstransfer.2009.03.011
13.
Xu
,
J.
, and
Fisher
,
T. S.
,
2006
, “
Enhancement of Thermal Interface Materials With Carbon Nanotube Arrays
,”
Int. J. Heat Mass Transfer
,
49
(
9–10
), pp.
1658
1666
.10.1016/j.ijheatmasstransfer.2005.09.039
14.
Xu
,
J.
, and
Fisher
,
T. S.
,
2006
, “
Enhanced Thermal Contact Conductance Using Carbon Nanotube Array Interfaces
,”
IEEE Trans. Compon. Packag. Technol.
,
29
(
2
), pp.
261
267
.10.1109/TCAPT.2006.875876
15.
Park
,
M.
,
Cola
,
B. A.
,
Siegmund
,
T.
, and
Xu
,
J.
,
2006
, “
Effects of a Carbon Nanotube Layer on Electrical Contact Resistance Between Copper Substrates
,”
Nanotechnology
,
17
, pp.
2294
2303
.10.1088/0957-4484/17/9/038
16.
Amama
,
P. B.
,
Cola
,
B. A.
,
Sands
,
T. D.
, and
Xu
,
X.
,
2007
, “
Dendrimer-Assisted Controlled Growth of Carbon Nanotubes for Enhanced Thermal Interface Conductance
,”
Nanotechnology
,
18
, p.
385303
.10.1088/0957-4484/18/38/385303
17.
Cola
,
B. A.
,
Amama
,
P. B.
,
Xu
,
X.
, and
Fisher
,
T. S.
,
2008
, “
Effects of Growth Temperature on Carbon Nanotube Array Thermal Interfaces
,”
ASME J. Heat Transfer
,
130
, p.
114503
.10.1115/1.2969758
18.
Cola
,
B. A.
,
Xu
,
J.
,
Cheng
,
C.
,
Xu
,
X.
, and
Fisher
,
T. S.
,
2007
, “
Photoacoustic Characterization of Carbon Nanotube Array Thermal Interfaces
,”
J. Appl. Phys.
,
101
, p.
054313
.10.1063/1.2510998
19.
Cola
,
B. A.
,
Xu
,
X.
, and
Fisher
,
T. S.
,
2007
, “
Increased Real Contact in Thermal Interfaces: A Carbon Nanotube/Foil Material
,”
Appl. Phys. Lett.
,
90
, p.
093513
.10.1063/1.2644018
20.
Tong
,
T.
,
Zhao
,
Y.
,
Delzeit
,
L.
, and
Kashani
,
A.
,
2007
, “
Dense Vertically Aligned Multiwalled Carbon Nanotube Arrays as Thermal Interface Materials
,”
IEEE Trans. Compon. Packag. Technol.
,
30
(
1
), pp.
92
100
.10.1109/TCAPT.2007.892079
21.
Zhang
,
K.
,
Chai
,
Y.
,
Yuen
,
M. M. F.
,
Xiao
,
D. G. W.
, and
Chan
,
P. C. H.
,
2008
, “
Carbon Nanotube Thermal Interface Material for High-Brightness Light-Emitting-Diode Cooling
,”
Nanotechnology
,
19
, p.
215706
.10.1088/0957-4484/19/21/215706
22.
Panzer
,
M. A.
,
Zhang
,
G.
,
Mann
,
D.
,
Hu
,
X.
, and
Pop
,
E.
,
2008
, “
Thermal Properties of Metal-Coated Vertically Aligned Single-Wall Nanotube Arrays
,”
ASME J. Heat Transfer
,
130
, p.
052401
.10.1115/1.2885159
23.
Sample
,
J. L.
,
Rebello
,
K. J.
,
Saffarian
,
H.
, and
Osiander
,
R.
, “
Carbon Nanotube Coating for Thermal Control
,”
Proceedings of the 9th Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (ITherm)
, pp.
297
301
.
24.
Ngo
,
Q.
,
Gurden
,
B. A.
,
Cassell
,
A. M.
,
Walker
,
M. D.
,
Ye
,
Q.
,
Koehne
,
J. E.
,
Meyyappan
,
M.
,
Li
,
J.
, and
Yang
,
C. Y.
, “
Thermal Conductivity of Carbon Nanotube Composite Films
,”
Proceedings of the Material Research Society Symposium
, pp.
F3.18.11
F13.18.16
.
25.
Huxtable
,
S.
,
Cahill
,
D.
,
Shenogin
,
S.
,
Xue
,
L.
,
Ozisik
,
R.
,
Barone
,
P.
,
Usrey
,
M.
,
Strano
,
M.
,
Siddons
,
G.
,
Shim
,
M.
, and
Keblinski
,
P.
,
2003
, “
Interfacial Heat Flow in Carbon Nanotube Suspensions
,”
Nat. Mater.
,
2
(
11
), pp.
731
734
.10.1038/nmat996
26.
Marconnet
,
A. M.
,
Yamamoto
,
N.
,
Panzer
,
M. A.
,
Wardle
,
B. L.
, and
Goodson
,
K. E.
,
2011
, “
Thermal Conduction in Aligned Carbon Nanotube–Polymer Nanocomposites With High Packing Density
,”
ACS Nano
,
5
(
6
), pp.
4818
4825
.10.1021/nn200847u
27.
Fan
,
S.
,
Chapline
,
M. G.
,
Franklin
,
N. R.
,
Tombler
,
T. W.
,
Cassell
,
A. M.
, and
Dai
,
H.
,
1999
, “
Self-Oriented Regular Arrays of Carbon Nanotubes and Their Field Emission Properties
,”
Science
,
283
(
5401
), pp.
512
514
.10.1126/science.283.5401.512
28.
Maschmann
,
M. R.
,
Amama
,
P. B.
,
Goyal
,
A.
,
Iqbal
,
Z.
, and
Fisher
,
T. S.
,
2006
, “
Freestanding Vertically Oriented Single-Walled Carbon Nanotubes Synthesized Using Microwave Plasma Enhanced CVD
,”
Carbon
,
44
(
13
), pp.
2758
2763
.10.1016/j.carbon.2006.03.040
29.
Senthil Kumar
,
M.
,
Lee
,
S. H.
,
Kim
,
T. Y.
,
Kim
,
T. H.
,
Song
,
S. M.
,
Yang
,
J. W.
,
Nahm
,
K. S.
, and
Suh
,
E. K.
,
2003
, “
DC Electric Field Assisted Alignment of Carbon Nanotubes on Metal Electrodes
,”
Solid-State Electron.
,
47
(
11
), pp.
2075
2080
.10.1016/S0038-1101(03)00258-2
30.
Ural
,
A.
,
Li
,
Y.
, and
Dai
,
H.
,
2002
, “
Electric-Field-Aligned Growth of Single-Walled Carbon Nanotubes on Surfaces
,”
Appl. Phys. Lett.
,
81
(
18
), pp.
3464
3466
.10.1063/1.1518773
31.
Chen
,
X. Q.
,
Saito
,
T.
,
Yamada
,
H.
, and
Matsushige
,
K.
,
2001
, “
Aligning Single-Wall Carbon Nanotubes With an Alternating-Current Electric Field
,”
Appl. Phys. Lett.
,
78
(
23
), pp.
3714
3716
.10.1063/1.1377627
32.
Bower
,
C.
,
Zhu
,
W.
,
Jin
,
S.
, and
Zhou
,
O.
,
2000
, “
Plasma-Induced Alignment of Carbon Nanotubes
,”
Appl. Phys. Lett.
,
77
(
6
), pp.
830
832
.10.1063/1.1306658
33.
Zhao
,
Y.
,
Tong
,
T.
,
Delzeit
,
L.
,
Kashani
,
A.
,
Meyyappan
,
M.
, and
Majumdar
,
A.
,
2006
, “
Interfacial Energy and Strength of Multiwalled-Carbon-Nanotube-Based Dry Adhesive
,”
J. Vac. Sci. Technol. B
,
24
(
1
), pp.
331
335
.10.1116/1.2163891
34.
Lepró
,
X.
,
Lima
,
M. D.
, and
Baughman
,
R. H.
,
2010
, “
Spinnable Carbon Nanotube Forests Grown on Thin, Flexible Metallic Substrates
,”
Carbon
,
48
(
12
), pp.
3621
3627
.10.1016/j.carbon.2010.06.016
35.
Wasniewski
,
J. R.
,
Altman
,
D. H.
,
Hodson
,
S. L.
,
Fisher
,
T. S.
,
Bulusu
,
A.
,
Graham
,
S.
, and
Cola
,
B. A.
,
2011
, “
Characterization of Metallically Bonded Carbon Nanotube-Based Thermal Interface Materials Using a High Accuracy 1D Steady-State Technique
,”
ASME Conference Proceedings
, pp.
231
240
.
36.
Emmenegger
,
C.
,
Mauron
,
P.
,
Züttel
,
A.
,
Nützenadel
,
C.
,
Schneuwly
,
A.
,
Gallay
,
R.
, and
Schlapbach
,
L.
,
2000
, “
Carbon Nanotube Synthesized on Metallic Substrates
,”
Appl. Surf. Sci.
,
162–163
, pp.
452
456
.10.1016/S0169-4332(00)00232-4
37.
Mujumdar
,
A. S.
,
2006
,
Handbook of Industrial Drying
,
3rd ed.
,
Taylor & Francis
,
London
.
38.
Lin
,
W.
,
Moon
,
K. S.
,
Zhang
,
S. J.
,
Ding
,
Y.
,
Shang
,
J. T.
,
Chen
,
M. X.
, and
Wong
,
C. P.
,
2010
, “
Microwave Makes Carbon Nanotubes Less Defective
,”
ACS Nano
,
4
(
3
), pp.
1716
1722
.10.1021/nn901621c
39.
Su
,
H.-C.
,
Chen
,
C.-H.
,
Chen
,
Y.-C.
,
Yao
,
D.-J.
,
Chen
,
H.
,
Chang
,
Y.-C.
, and
Yew
,
T.-R.
,
2010
, “
Improving the Adhesion of Carbon Nanotubes to a Substrate Using Microwave Treatment
,”
Carbon
,
48
(
3
), pp.
805
812
.10.1016/j.carbon.2009.10.032
40.
Doerner
,
M.
, and
Nix
,
W.
,
1986
, “
A Method for Interpreting the Data From Depth-Sensing Indentation Instruments
,”
J. Mater. Res.
,
1
(
4
), pp.
601
609
.10.1557/JMR.1986.0601
41.
Oliver
,
W. C.
, and
Pharr
,
G. M.
,
1992
, “
An Improved Technique for Determining Hardness and Elastic Modulus Using Load and Displacement Sensing Indentation Experiments
,”
J. Mater. Res.
,
7
(
6
), pp.
1564
1583
.10.1557/JMR.1992.1564
42.
Hu
,
H. P.
,
Wang
,
X. W.
, and
Xu
,
X. F.
,
1999
, “
Generalized Theory of the Photoacoustic Effect in a Multilayer Material
,”
J. Appl. Phys.
,
86
(
7
), pp.
3953
3958
.10.1063/1.371313
43.
Benedict
,
L. X.
,
Louie
,
S. G.
, and
Cohen
,
M. L.
,
1995
, “
Static Polarizabilities of Single-Wall Carbon Nanotubes
,”
Phys. Rev. B
,
52
(
11
), pp.
8541
8549
.10.1103/PhysRevB.52.8541
44.
Ye
,
Z.
,
Deering
,
W. D.
,
Krokhin
,
A.
, and
Roberts
,
J. A.
,
2006
, “
Microwave Absorption by an Array of Carbon Nanotubes: A Phenomenological Model
,”
Phys. Rev. B
,
74
(
7
), p.
075425
.10.1103/PhysRevB.74.075425
45.
Dong
,
L. F.
,
Youkey
,
S.
,
Bush
,
J.
,
Jiao
,
J.
,
Dubin
,
V. M.
, and
Chebiam
,
R. V.
,
2007
, “
Effects of Local Joule Heating on the Reduction of Contact Resistance Between Carbon Nanotubes and Metal Electrodes
,”
J. Appl. Phys.
,
101
(
2
), p.
024320
.10.1063/1.2430769
46.
Harutyunyan
,
A. R.
,
Pradhan
,
B. K.
,
Chang
,
J. P.
,
Chen
,
G. G.
, and
Eklund
,
P. C.
,
2002
, “
Purification of Single-Wall Carbon Nanotubes by Selective Microwave Heating of Catalyst Particles
,”
J. Phys. Chem. B
,
106
(
34
), pp.
8671
8675
.10.1021/jp0260301
47.
Chen
,
C. M.
,
Chen
,
M.
,
Peng
,
Y. W.
,
Yu
,
H. W.
, and
Chen
,
C. F.
,
2006
, “
High Efficiency Microwave Digestion Purification of Multi-Walled Carbon Nanotubes Synthesized by Thermal Chemical Vapor Deposition
,”
Thin Solid Films
,
498
(
1–2
), pp.
202
205
.10.1016/j.tsf.2005.07.088
48.
Chen
,
C. M.
,
Chen
,
M.
,
Peng
,
Y. W.
,
Lin
,
C. H.
,
Chang
,
L. W.
, and
Chen
,
C. F.
,
2005
, “
Microwave Digestion and Acidic Treatment Procedures for the Purification of Multi-Walled Carbon Nanotubes
,”
Diamond Relat. Mater.
,
14
(
3–7
), pp.
798
803
.10.1016/j.diamond.2004.11.022
49.
Ajayan
,
P. M.
,
Ebbesen
,
T. W.
,
Ichihashi
,
T.
,
Iijima
,
S.
,
Tanigaki
,
K.
, and
Hiura
,
H.
,
1993
, “
Opening Carbon Nanotubes With Oxygen and Implications for Filling
,”
Nature
,
362
(
6420
), pp.
522
525
.10.1038/362522a0
50.
Qiu
,
A.
,
Fowler
,
S.
,
Jiao
,
J.
,
Kiener
,
D.
, and
Bahr
,
D.
,
2011
, “
Time-Dependent Contact Behavior Between Diamond and a CNT Turf
,”
Nanotechnology
,
22
, p.
295702
.10.1088/0957-4484/22/29/295702
You do not currently have access to this content.