Carbon nanotube (CNT)-based piezoresistive strain sensors have the potential to outperform traditional silicon-based piezoresistors in MEMS devices due to their high strain sensitivity. However, the resolution of CNT-based piezoresistive sensors is currently limited by excessive 1/f or flicker noise. In this paper, we will demonstrate several nanomanufacturing methods that can be used to decrease noise in the CNT-based sensor system without reducing the sensor's strain sensitivity. First, the CNTs were placed in a parallel resistor network to increase the total number of charge carriers in the sensor system. By carefully selecting the types of CNTs used in the sensor system and by correctly designing the system, it is possible to reduce the noise in the sensor system without reducing sensitivity. The CNTs were also coated with aluminum oxide to help protect the CNTs from environmental effects. Finally, the CNTs were annealed to improve contact resistance and to remove adsorbates from the CNT sidewall. The optimal annealing conditions were determined using a design-of-experiments (DOE). Overall, using these noise mitigation techniques it is possible to reduce the total noise in the sensor system by almost 3 orders of magnitude and increase the dynamic range of the sensors by 48 dB.

References

References
1.
Cullinan
,
M. A.
,
Panas
,
R. M.
, and
Culpepper
,
M. L.
,
2012
, “
A Multi-Axis MEMS Sensor With Integrated Carbon Nanotube-Based Piezoresistors for Nanonewton Level Force Metrology
,”
Nanotechnology
,
23
(
32
), p.
325501
.10.1088/0957-4484/23/32/325501
2.
Cullinan
,
M. A.
,
Panas
,
R. M.
, and
Culpepper
,
M. L.
,
2009
, “
Design of Micro-Scale Multi-Axis Force Sensors for Precision Applications
,”
Proceedings of the 2009 Annual Meeting of the American Society for Precision Engineering
,
Monterey, CA
.
3.
Stampfer
C.
,
Jungen
A.
,
Linderman
R.
,
Obergfell
D.
,
Roth
S.
, and
Hierold
C.
,
2006
, “
Nano-Electromechanical Displacement Sensing Based on Single-Walled Carbon Nanotubes
,”
Nano Lett.
,
6
(
7
), pp.
1449
1453
.10.1021/nl0606527
4.
Collins
,
P. G.
,
Fuhrer
,
M. S.
, and
Zettl
,
A.
,
2000
, “
1/F Noise in Carbon Nanotubes
,”
Appl. Phys. Lett.
,
76
(
7
), pp.
894
896
.10.1063/1.125621
5.
Cullinan
,
M. A.
, and
Culpepper
,
M. L.
,
2010
, “
Noise Mitigation Techniques for Carbon Nanotube-Based Piezoresistive Sensor Systems
,”
Proceedings of the 2010 Fall Meeting of the Materials Research Society
.
6.
Senturia
,
S. D.
,
2002
,
Microsystem Design
,
Kluwer Academic Publishers
,
New York, NY
.
7.
Ishigami
,
M.
,
Chen
,
J. H.
,
Williams
,
E. D.
,
Tobias
,
D.
,
Chen
,
Y. F.
, and
Fuhrer
,
M. S.
,
2006
, “
Hooge's Constant for Carbon Nanotube Field Effect Transistors
,”
Appl. Phys. Lett.
,
88
(
20
), p.
203116
.10.1063/1.2206685
8.
Liu
,
F.
,
Wang
,
K. L.
,
Zhang
,
D.
, and
Zhou
,
C.
,
2006
, “
Noise in Carbon Nanotube Field Effect Transistor
,”
Appl. Phys. Lett.
,
89
(
6
), p.
063116
.10.1063/1.2335777
9.
Briman
,
M.
,
Bradley
,
K.
, and
Gruner
,
G.
,
2006
, “
Source of 1/f Noise in Carbon Nanotube Devices
,”
J. Appl. Phys.
,
100
, p.
013505
.10.1063/1.2210570
10.
Lin
,
Y.
,
Appenzeller
,
J.
,
Chen
,
Z.
, and
Avouris
,
P.
,
2007
, “
Electrical Transport and 1/f Noise in Semiconducting Carbon Nanotubes
,”
Physica E
,
37
(
1–2
), pp.
72
77
.10.1016/j.physe.2006.07.008
11.
Lin
,
Y.-M.
,
Appenzeller
,
J.
,
Knoch
,
J.
,
Chen
,
Z.
, and
Avouris
,
P.
,
2006
, “
Low-Frequency Current Fluctuations in Individual Semiconducting Single-Wall Carbon Nanotubes
,”
Nano Lett.
,
6
(
5
), pp.
930
936
.10.1021/nl052528d
12.
Tobias
,
D.
,
Ishigami
,
M.
,
Tselev
,
A.
,
Barbara
,
P.
,
Williams
,
E.
,
Lobb
,
C.
, and
Fuhrer
,
M.
,
2008
, “
Origins of 1/f Noise in Individual Semiconducting Carbon Nanotube Field-Effect Transistors
,”
Phys. Rev. B
,
77
(
3
), pp.
1
4
.10.1103/PhysRevB.77.033407
13.
Lin
,
Y.-M.
,
Tsang
,
J. C.
,
Freitag
,
M.
, and
Avouris
,
P.
,
2007
, “
Impact of Oxide Substrate on Electrical and Optical Properties of Carbon Nanotube Devices
,”
Nanotechnology
,
18
(
29
), p.
295202
.10.1088/0957-4484/18/29/295202
14.
Sangwan
,
V. K.
,
Ballarotto
,
V. W.
,
Fuhrer
,
M. S.
, and
Williams
,
E. D.
,
2008
, “
Facile Fabrication of Suspended As-Grown Carbon Nanotube Devices
,”
Appl. Phys. Lett.
,
93
(
11
), p.
113112
.10.1063/1.2987457
15.
Reza
,
S.
,
Huynh
,
Q. T.
,
Bosman
,
G.
,
Sippel-Oakley
,
J.
, and
Rinzler
,
A. G.
,
2006
, “
1/F Noise in Metallic and Semiconducting Carbon Nanotubes
,”
J. Appl. Phys.
,
100
(
9
), p.
094318
.10.1063/1.2360776
16.
Tersoff
,
J.
,
2007
, “
Low-Frequency Noise in Nanoscale Ballistic Transistors
,”
Nano Lett.
,
7
(
1
), pp.
194
198
.10.1021/nl062141q
17.
Postma
,
H. W.
,
Teepen
,
T. F.
,
Yao
,
Z.
, and
Dekker
,
C.
,
2001
, “
1/f Noise in Carbon Nanotubes
,”
Proceedings of the XXXVIth Rencontres de Moriond
,
Les Arcs, France
.
18.
Tarkiainen
,
R.
,
Roschier
,
L.
,
Ahlskog
,
M.
,
Paalanen
,
M.
, and
Hakonen
,
P.
,
2005
, “
Low-Frequency Current Noise and Resistance Fluctuations in Multiwalled Carbon Nanotubes
,”
Physica E
,
28
(
1
), pp.
57
65
.10.1016/j.physe.2005.01.014
19.
Behnam
,
A.
,
Bosman
,
G.
, and
Ural
,
A.
,
2009
, “
1/f Noise in Single-Walled Carbon Nanotube Films
,”
Proc. SPIE
,
7204
, p.
72040J
.10.1117/12.807407
20.
Behnam
,
A.
,
Bosman
,
G.
, and
Ural
,
A.
,
2008
, “
Percolation Scaling of 1/f Noise in Single-Walled Carbon Nanotube Films
,”
Phys. Rev. B
,
78
(
8
), p.
085431
.10.1103/PhysRevB.78.085431
21.
Soliveres
S.
,
Gyani
J.
,
Delseny
C.
,
Hoffmann
A.
, and
Pascal
F.
,
2007
, “
1/F Noise and Percolation in Carbon Nanotube Random Networks
,”
Appl. Phys. Lett.
,
90
(
8
), p.
082107
.10.1063/1.2709853
22.
Behnam
,
A.
,
Biswas
,
A.
,
Bosman
,
G.
, and
Ural
,
A.
,
2010
, “
Temperature-Dependent Transport and 1/f Noise Mechanisms in Single-Walled Carbon Nanotube Films
,”
Phys. Rev. B
,
81
(
12
), p.
125407
.10.1103/PhysRevB.81.125407
23.
Lee
,
M.
,
Lee
,
J.
,
Kim
,
T. H.
,
Lee
,
H.
,
Lee
,
B. Y.
,
Park
,
J.
,
Jhon
,
Y. M.
,
Seong
,
M.-J.
, and
Hong
,
S.
,
2010
, “
100 Nm Scale Low-Noise Sensors Based on Aligned Carbon Nanotube Networks: Overcoming the Fundamental Limitation of Network-Based Sensors.
,”
Nanotechnology
,
21
(
5
), p.
055504
.10.1088/0957-4484/21/5/055504
24.
Snow
,
E. S.
,
Novak
,
J. P.
,
Lay
,
M. D.
, and
Perkins
,
F. K.
,
2004
, “
1/F Noise in Single-Walled Carbon Nanotube Devices
,”
Appl. Phys. Lett.
,
85
(
18
), pp.
4172
4174
.10.1063/1.1812838
25.
Kim
,
U. J.
,
Kim
,
K. H.
,
Kim
,
K. T.
,
Min
,
Y.-S.
, and
Park
,
W.
,
2008
, “
Noise Characteristics of Single-Walled Carbon Nanotube Network Transistors
,”
Nanotechnology
,
19
(
28
), p.
285705
.10.1088/0957-4484/19/28/285705
26.
Helbling
,
T.
,
Hierold
,
C.
,
Roman
,
C.
,
Durrer
,
L.
,
Mattmann
,
M.
, and
Bright
,
V. M.
,
2009
, “
Long Term Investigations of Carbon Nanotube Transistors Encapsulated by Atomic-Layer-Deposited Al2O3 for Sensor Applications
,”
Nanotechnology
,
20
(
43
), p.
434010
.10.1088/0957-4484/20/43/434010
27.
Xu
,
G.
,
Liu
,
F.
,
Han
,
S.
,
Ryu
,
K.
,
Badmaev
,
A.
,
Lei
,
B.
,
Zhou
,
C.
, and
Wang
,
K. L.
,
2008
, “
Low-Frequency Noise in Top-Gated Ambipolar Carbon Nanotube Field Effect Transistors
,”
Appl. Phys. Lett.
,
92
(
22
), p.
223114
.10.1063/1.2940590
28.
Kim
,
S. K.
,
Xuan
,
Y.
,
Ye
,
P. D.
,
Mohammadi
,
S.
,
Back
,
J. H.
, and
Shim
,
M.
,
2007
, “
Atomic Layer Deposited Al2O3 for Gate Dielectric and Passivation Layer of Single-Walled Carbon Nanotube Transistors
,”
Appl. Phys. Lett.
,
90
(
16
), p.
163108
.10.1063/1.2724904
29.
Lu
,
R.
,
Xu
,
G.
, and
Wu
,
J. Z.
,
2008
, “
Effects of Thermal Annealing on Noise Property and Temperature Coefficient of Resistance of Single-Walled Carbon Nanotube Films
,”
Appl. Phys. Lett.
,
93
(
21
), p.
213101
.10.1063/1.3035848
30.
Lin
,
Y.-M.
,
Appenzeller
,
J.
,
Tsuei
,
C. C.
,
Chen
,
A.
, and
Avouris
,
P.
,
2006
, “
Reduction of 1/f Noise in Carbon Nanotube Devices
,”
64th Device Research Conference Digest
, pp.
179
180
.
31.
Appenzeller
,
J.
,
Lin
,
Y.-M.
,
Knoch
,
J.
,
Chen
,
Z.
, and
Avouris
,
P.
,
2007
, “
1/f Noise in Carbon Nanotube Devices—On the Impact of Contacts and Device Geometry
,”
IEEE Trans. Nanotechnol.
,
6
(
3
), pp.
368
373
.10.1109/TNANO.2007.892052
32.
Back
,
J. H.
,
Kim
,
S.
,
Mohammadi
,
S.
, and
Shim
,
M.
,
2008
, “
Low-Frequency Noise in Ambipolar Carbon Nanotube Transistors
,”
Nano Lett.
,
8
(
4
), pp.
1090
1094
.10.1021/nl073140g
33.
Helbling
T.
,
Roman
C.
, and
Hierold
C.
,
2010
, “
Signal-to-Noise Ratio in Carbon Nanotube Electromechanical Piezoresistive Sensors
,”
Nano Lett.
,
10
(
9
), pp.
3350
3354
.10.1021/nl101031e
34.
Manohara
,
H. M.
,
Wong
,
E. W.
,
Schlecht
,
E.
,
Hunt
,
B. D.
, and
Siegel
,
P. H.
,
2005
, “
Carbon Nanotube Schottky Diodes Using Ti-Schottky and Pt-Ohmic Contacts for High Frequency Applications
,”
Nano Lett.
,
5
(
7
), pp.
1469
1474
.10.1021/nl050829h
35.
Lee
,
J. O.
,
Park
,
C.
,
Kim
,
J. J.
,
Kim
,
J.
,
Park
,
J. W.
, and
Yoo
,
K. H.
,
2000
, “
Formation of Low-Resistance Ohmic Contacts Between Carbon Nanotube and Metal Electrodes by a Rapid Thermal Annealing Method
,”
J. Phys. D: Appl. Phys.
,
33
, pp.
1953
1956
.10.1088/0022-3727/33/16/303
36.
Chen
,
Z.
,
Appenzeller
,
J.
,
Knoch
,
J.
,
Lin
,
Y.-ming
, and
Avouris
,
P.
,
2005
, “
The Role of Metal-Nanotube Contact in the Performance of Carbon Nanotube Field-Effect Transistors
,”
Nano Lett.
,
5
(
7
), pp.
1497
1502
.10.1021/nl0508624
37.
Lim
,
S. C.
,
Jang
,
J. H.
,
Bae
,
D. J.
,
Han
,
G. H.
,
Lee
,
S.
,
Yeo
,
I. S.
, and
Lee
,
Y. H.
,
2009
, “
Contact Resistance Between Metal and Carbon Nanotube Interconnects: Effect of Work Function and Wettability
,”
Appl. Phys. Lett.
,
95
, p.
264103
.10.1063/1.3255016
38.
Anantram
,
M. P.
,
Datta
,
S.
, and
Xue
,
Y.
,
2000
, “
Coupling of Carbon Nanotubes to Metallic Contacts
,”
Phys. Rev. B
,
61
(
20
), pp.
14219
14224
.10.1103/PhysRevB.61.14219
39.
Matsuda
,
Y.
,
Deng
,
W. Q.
, and
Goddard
,
W. A.
, III
,
2010
, “
Contact Resistance for ‘End-Contacted’ Metal-Graphene and Metal-Nanotube Interfaces From Quantum Mechanics
,”
J. Phys. Chem. C
,
114
, pp.
17845
17850
.10.1021/jp806437y
40.
Matsuda
,
Y.
,
Deng
,
W. Q.
, and
Goddard
,
W. A.
, III
,
2007
, “
Contact Resistance Properties Between Nanotubes and Various Metals From Quantum Mechanics
,”
J. Phys. Chem. C
,
111
, pp.
11113
11116
.10.1021/jp072794a
41.
Panas
,
R. M.
,
Cullinan
,
M. A.
, and
Culpepper
,
M. L.
,
2010
, “
A Systems Approach to Modeling of Piezoresistive MEMS Sensors
,”
Proceedings of the 2010 American Society for Precision Engineering, Control of Precision Systems Conference
,
Boston, MA
.
42.
Panas
,
R. M.
,
Cullinan
,
M. A.
, and
Culpepper
,
M. L.
,
2012
, “
Design of Piezoresistive-Based MEMS Sensor Systems for Precision Microsystems
,”
Precis. Eng.
,
36
(
1
), pp.
44
54
.10.1016/j.precisioneng.2011.07.004
43.
Cullinan
,
M.
, and
Culpepper
,
M.
,
2010
, “
Carbon Nanotubes as Piezoresistive Microelectromechanical Sensors: Theory and Experiment
,”
Phys. Rev. B
,
82
(
11
), p.
115482
.10.1103/PhysRevB.82.115428
You do not currently have access to this content.