In the metal injection molding (MIM) process, fine metal powders are mixed with a binder and injected into molds, similar to plastic injection molding. After molding, the binder is removed from the part, and the compact is sintered to almost full density. Though able to create high-density parts of excellent dimensional control and surface finish, the MIM process is restricted in the size of part that can be produced, due to gravitational deformation during high-temperature sintering and maximum thickness requirements to remove the binding agents in the green state. Larger parts could be made by bonding the green parts to a substrate during sintering; however, a primary obstacle to this approach lies in the sinter shrinkage of the MIM part, which can be up to 20%, meaning that the MIM part shrinks during sintering, while the conventional substrate maintains its dimensions. This behavior would typically inhibit bonding and/or cause cracking and deformation of the MIM part. In this work, we present a structure of micro features molded onto the surface of the MIM part, which bonds, deforms, and allows for shrinkage while bonding to the substrate. The micro features tolerate plastic deformation to permit the shrinkage without causing cracks after the initial bonds are established. In a first series of tests, bond strengths of up to 80% of that of resistance welds have been achieved. This paper describes how the authors developed their proposed method of sinter bonding and how they accomplished effective sinter bonds between MIM parts and solid substrates.

References

1.
German
,
R. M.
,
1997
,
Injection Molding of Metals and Ceramics
,
Metal Powder Industries Federation
,
Princeton, NJ
,
413
p.
2.
MimTechnik GmbH
,
2012
, “
MIMTechnik: Technology
,” http://www.mimtechnik.de/englisch/technologie0302.htm, Last accessed Oct. 1, 2012
3.
Tabata
,
T.
, and
Masaki
,
S.
,
1985
, “
How to Produce P/M Composite Parts From Metal Powder and Solid Metal by Sinter Bonding
,”
Modern Dev. Powder Metall.
,
16
(
1
), pp.
181
194
.
4.
Tabata
,
T.
,
Masaki
,
S.
,
Kitagawa
,
K.
,
Matsuoka
,
Y.
, and
Minami
,
K.
,
1991
, “
Fabrication of Composite Parts by Sinter Bonding
,”
Int. J. Powder Metall.
,
27
(
3
), pp.
265
273
.
5.
Umeha
,
G.
,
Urano
,
S.
, and
Kato
,
S.
,
1985
,
Method for Manufacturing Camshaft
, U.S. Patent No. 4,556,532, Nippon Piston Ring Co., Ltd.
6.
German
,
R. M.
,
1996
,
Sintering Theory and Practice
, 1st ed.,
John Wiley & Sons, Inc.
,
New York, NY
.
7.
Potente
,
H. W.
, and
Lars
,
2004
, “
Joining injection moulded sintered parts in the green compact phase
,”
Kunststoffe Plast Europe
,
94
(
11
), pp.
58
60
.
8.
Miura
,
H.
,
Hasama
,
K.
,
Baba
,
T.
, and
Honda
,
T.
,
1997
, “
Joining for More Functional and Complicated Parts in MIM Process
,”
Funtai Oyobi Fummatsu Yakin/J. Jpn. Soc. Powder Powder Metall.
,
44
(
5
), pp.
437
442
.10.2497/jjspm.44.437
9.
Baumgartner
,
R.
, and
Tan
,
L.-K.
,
2002
, “
MIM 'Marries' Metals
,”
Metal Powder Rep.
,
57
(
3
), pp.
38
42
.
10.
Zhang
,
S.
,
Li
,
Q.
,
Ho
,
M.
, and
Tong
,
K.
,
2003
, “
Sinter Bonding Sticks MIM Ahead Again
,”
Metal Powder Rep.
,
58
(
12
), pp.
20
23
.
11.
Imgrund
,
P.
,
Rota
,
A.
, and
Wiegmann
,
M.
,
2007
, “
Getting Better Bonding at Tiny Interfaces
,”
Metal Powder Rep.
,
62
(
3
), pp.
31
34
.10.1016/S0026-0657(07)70064-4
12.
Bordia
,
R. K.
, and
Scherer
,
G. W.
,
1988
, “
On Constrained Sintering-I. Constitutive Model for a Sintering Body
,”
Acta Metall.
,
36
(
9
), pp.
2393
2397
.10.1016/0001-6160(88)90189-7
13.
Bordia
,
R. K.
, and
Scherer
,
G. W.
,
1988
, “
On Constrained Sintering-II. Comparison of Constitutive Models
,”
Acta Metall.
,
36
(
9
), pp.
2399
2409
.10.1016/0001-6160(88)90190-3
14.
Cai
,
P. Z.
,
Green
,
D. J.
, and
Messing
,
G. L.
,
1997
, “
Constrained Densification of Alumina/Zirconia Hybrid Laminates, I: Experimental Observations of Processing Defects
,”
J. Am. Ceram. Soc.
,
80
(
8
), pp.
1929
1939
.10.1111/j.1151-2916.1997.tb03075.x
15.
Cai
,
P. Z.
,
Green
,
D. J.
, and
Messing
,
G. L.
,
1997
, “
Constrained Densification of Alumina/Zirconia Hybrid Laminates, II: Viscoelastic Stress Computation
,”
J. the Am. Ceram. Soc.
,
80
(
8
), pp.
1940
1948
.10.1111/j.1151-2916.1997.tb03076.x
16.
Ollagnier
,
J.-B.
,
Guillon
,
O.
, and
Rödel
,
J.
,
2010
, “
Constrained Sintering of a Glass Ceramic Composite: I. Asymmetric Laminate
,”
J. Am. Ceram. Soc.
,
93
(
1
), pp.
74
81
.10.1111/j.1551-2916.2009.03346.x
17.
Ollagnier
,
J.-B.
,
Green
,
D. J.
,
Guillon
,
O.
, and
Rödel
,
J.
,
2010
, “
Constrained Sintering of a Glass Ceramic Composite: II. Symmetric Laminate
,”
J. Am. Ceram. Soc.
,
92
(
12
), pp.
2900
2906
.10.1111/j.1551-2916.2009.03347.x
18.
Hsu
,
R.-T.
, and
Jean
,
J.-H.
,
2005
, “
Key Factors Controlling Camber Behavior During the Cofiring of Bi-Layer Ceramic Dielectric Laminates
,”
J. Am. Ceram. Soc.
,
88
(
9
), pp.
2429
2434
.10.1111/j.1551-2916.2005.00496.x
19.
Jean
,
J. H.
, and
Chang
,
C. R.
,
1997
, “
Co-Firing Kinetics and Mechanisms of an Ag-Metallized Ceramic-Filled Glass Electronic Package
,”
J. Am. Ceram. Soc.
,
80
(
12
), pp.
3084
3092
.10.1111/j.1151-2916.1997.tb03236.x
20.
Kanters
,
J.
,
Eisele
,
U.
, and
Rödel
,
J. J.
,
2001
, “
Cosintering Simulation and Experimentation: Case Study of Nanocrystalline Zirconia
,”
J. Am. Ceram. Soc.
,
84
(
12
), pp.
2757
2763
.10.1111/j.1151-2916.2001.tb01091.x
21.
Olevsky
,
E.
,
Tikare
,
V.
, and
Garino
,
T.
,
2006
, “
Multi-Scale Modeling of Sintering—A Review
,”
J. Am. Ceram. Soc.
,
89
(
6
), pp.
1914
1922
.10.1111/j.1551-2916.2006.01054.x
22.
Harikou
,
T.
,
Itoh
,
Y.
,
Satoh
,
K.
, and
Miura
,
H.
,
2004
, “
Joining of Stainless Steels (SUS316L) and Hard Materials by Insert Injection Molding
,”
Funtai Oyobi Fummatsu Yakin/J. Jpn. Soc. Powder Powder Metall.
,
51
(
1
), pp.
31
36
.10.2497/jjspm.51.31
23.
Schatt
,
W.
,
1992
,
Sintervorgänge
,
VDI-Verlag GmbH
,
Düsseldorf
.
24.
Danninger
,
H.
, and
Gierl
,
C.
,
2001
, “
Processes in PM Steel Compacts During the Initial Stages of Sintering
,”
Mater. Chem. Phys.
,
67
(
1–3
), pp.
49
55
.10.1016/S0254-0584(00)00419-3
You do not currently have access to this content.