This paper presents a comprehensive transient model of various phenomena that occur during laser ablation of TiC target at subnanosecond time-steps. The model is a 1D numerical simulation using finite volume method (FVM) on a target that is divided into subnanometric layers. The phenomena considered in the model include: plasma initiation, uniform plasma expansion, plasma shielding of incoming radiation, and temperature dependent material properties. It is observed that, during the target heating, phase transformations of any layer occur within a few picoseconds, which is significantly lower than the time taken for it to reach boiling point (~ns). The instantaneous width of the phase transformation zones is observed to be negligibly small (<5nm). In addition, the width of the melt zone remains constant once ablation begins. The melt width decreases with an increase in fluence and increases with an increase in pulse duration. On the contrary, the trend in the ablation depth is exactly opposite. The plasma absorbs about 25–50% of the incoming laser radiation at high fluences (20-40J/cm2), and less than 5% in the range of 5-10J/cm2. The simulated results of ablation depth on TiC are in good agreement at lower fluences. At moderate laser fluences (10-25J/cm2), the discrepancy of the error increases to nearly ±7%. Under prediction of ablation depth by 15% at high fluences of 40J/cm2 suggests the possibility of involvement of other mechanisms of removal such as melt expulsion and phase explosion at very high fluences.

References

References
1.
Choi
,
K. H.
,
Masuzawa
,
M. J.
, and
Kim
,
D.
,
2004
, “
Excimer Laser Micro-Machining for 3D Microstructure
,”
J. Mater. Process. Technol.
,
149
, pp.
561
566
.10.1016/j.jmatprotec.2004.03.005
2.
Schneider
,
M.
,
Berthe
,
L.
,
Fabbro
,
R.
, and
Muller
,
M.
,
2008
, “
Measurement of Laser Absorptivity for Operating Parameters Characteristic of Laser Drilling Regime
,”
J. Phys. D: Appl. Phys.
,
41
, p.
155502
.10.1088/0022-3727/41/15/155502
3.
Cesaria
,
M.
,
Caricato
,
A. P.
,
Leggieri
,
G.
,
Luches
,
A.
,
Martino
,
M.
,
Maruccio
,
G.
,
Catalano
,
M.
,
Manera
,
M. G.
,
Rella
,
R.
, and
Taurino
,
A.
,
2011
, “
Structural Characterization of Ultrathin Cr-Doped ITO Layers Deposited by Double-Target Pulsed Laser Ablation
,”
J. Phys. D: Appl. Phys.
,
44
, p.
365403
.10.1088/0022-3727/44/36/365403
4.
Ouyang
,
Z.
,
Meng
,
L.
,
Raman
,
P.
,
Cho
,
T. S.
, and
Ruzic
,
D. N.
,
2011
, “
Laser-Assisted Plasma Coating at Atmospheric Pressure: Production of Yttria-Stabilized Zirconia Thermal Barriers
,”
J. Phys. D: Appl. Phys.
,
44
, p.
265202
.10.1088/0022-3727/44/26/265202
5.
Jo
,
Y. K.
, and
Wen
,
S.-B.
,
2011
, “
Direct Generation of Core/Shell Nanoparticles From Double-Pulse Laser Ablation in a Background Gas
,”
J. Phys. D: Appl. Phys.
,
44
, p.
305301
.10.1088/0022-3727/44/30/305301
6.
Singh
,
R.
, and
Narayan
,
J.
,
1990
, “
Pulsed Laser Evaporation Technique for Depositing Thin Films: Physics and Theoretical Model
,”
Phys. Rev. B
,
41
, pp.
8843
8859
.10.1103/PhysRevB.41.8843
7.
Dabby
,
F.
, and
Paek
,
U.
,
1972
, “
High Intensity Laser-Induced Vaporization and Explosion of Solid Material
,”
IEEE J. Quantum Electron.
,
8
, pp.
106
111
.10.1109/JQE.1972.1076937
8.
Conde
,
J. C.
,
Lusquinos
,
F.
,
Gonzalez
,
P.
,
Serra
,
J.
,
Dima
,
A.
,
Cultrera
,
L.
,
Guido
,
D.
,
Zocco
,
A.
, and
Perrone
,
A.
,
2004
, “
Finite Element Analysis of the Initial Stages of the Laser Ablation Process
,”
Thin Solid Films
,
453-454
, pp.
323
327
.10.1016/j.tsf.2003.11.147
9.
Jeong
,
S.
,
Greif
,
R.
, and
Russo
,
R.
,
1998
, “
Numerical Modeling of Pulsed Laser Evaporation of Aluminum Targets
,”
Appl. Surf. Sci.
,
127-129
, pp.
177
183
.10.1016/S0169-4332(97)00629-6
10.
Bulgakova
,
N.
,
Bulgakov
,
A.
, and
Babich
,
L.
,
2004
, “
Energy Balance of Pulsed Laser Ablation: Thermal Model Revised
,”
Appl. Phys. A
,
79
, pp.
1323
1326
.10.1007/s00339-004-2763-2
11.
Wu
,
B.
, and
Shin
,
Y.
,
2006
Modelling of Nanosecond Laser Ablation With Vapor Plasma Formation
,”
J. Appl. Phys.
,
99
, p.
084310
.10.1063/1.2190718
12.
Oliveira
,
V.
, and
Vilar
,
R.
,
2007
, “
Finite Element Simulation of Pulsed Laser Ablation of Titanium Carbide
,”
Appl. Surf. Sci.
,
253
, pp.
7810
7814
.10.1016/j.apsusc.2007.02.101
13.
Vasantgadkar
,
N.
,
Bhandarkar
,
U.
, and
Joshi
,
S.
,
2010
, “
A Finite Element Model to Predict the Ablation Depth in Pulsed Laser Ablation
,”
Thin Solid Films
,
519
, pp.
1421
1430
.10.1016/j.tsf.2010.09.016
14.
Fang
,
R.
,
Zhang
,
D.
,
Li
,
Z.
,
Yang
,
F.
,
Li
,
L.
,
Tan
,
X.
,
Yang
,
F.
, and
Sun
,
M.
,
2008
, “
Improved Thermal Model and Its Application in UV High-Power Pulsed Laser Ablation of Metal Target
,”
Solid State Commun.
,
145
, pp.
556
560
.10.1016/j.ssc.2008.01.002
15.
Bogaerts
,
A.
,
Chen
,
Z.
,
Gijbels
,
R.
, and
Vertes
,
A.
,
2003
, “
Laser Ablation for Analytical Sampling: What Can We Learn From Modeling?
,”
Spectrochem Acta Part B
,
58
, pp.
1867
1893
.10.1016/j.sab.2003.08.004
16.
Marla
,
D.
,
Bhandarkar
,
U.
, and
Joshi
,
S.
,
2011
, “
Critical Assessment of the Issues in the Modeling of Ablation and Plasma Expansion Processes in the Pulsed Laser Deposition of Metals
,”
J. Appl. Phys.
,
109
, p.
021101
.10.1063/1.3537838
17.
Chen
,
F. F.
,
1984
,
Introduction to Plasma Physics and Controlled Fusion
, Vol. 1: Plasma Physics,
Plenum Press
,
New York
.
18.
Chen
,
Z.
, and
Bogaerts
,
A.
,
2005
, “
Laser Ablation of Cu and Plume Expansion into 1 atm Ambient Gas
,”
J. Appl. Phys.
,
97
, p.
063305
.10.1063/1.1863419
19.
Anisimov
,
S.
,
Bauerle
,
D.
, and
Luk'yanchuk
,
B.
,
1993
, “
Gas Dynamics and Film Profiles in Pulsed-Laser Deposition of Materials
,”
Phys. Rev. B
,
48
, pp.
12076
12081
.10.1103/PhysRevB.48.12076
20.
Oliveira
,
V.
,
Simoes
,
F.
, and
Vilar
,
R.
,
2005
, “
Column-Growth Mechanisms During KrF Laser Micromachining of Al2O3TiC Ceramics
,”
Appl. Phys. A
,
81
(
6
), pp.
1157
1162
.10.1007/s00339-004-3083-2
21.
Stafe
,
M.
,
Negutu
,
C.
, and
Popescu
,
I. M.
,
2007
, “
Theoretical Determination of the Ablation Rate of Metals in Multiple-Nanosecond Laser Pulses Irradiation Regime
,”
Appl. Surf. Sci.
,
253
, pp.
6353
6358
.10.1016/j.apsusc.2007.01.060
22.
Peterlongo
,
A.
,
Miotello
,
A.
, and
Kelly
,
R.
,
1994
, “
Laser-Pulse Sputtering of Aluminum: Vaporization, Boiling, Superheating, and Gas-Dynamic Effects
,”
Phys. Rev. E
,
50
, pp.
4716
4727
.10.1103/PhysRevE.50.4716
23.
Bulgakova
,
N.
, and
Bulgakov
,
A.
,
2001
, “
Pulsed Laser Ablation of Solids: Transition From Normal Vaporization to Phase Explosion
,”
Appl. Phys. A
,
73
, pp.
199
208
.10.1007/s003390000686
24.
Bulgakov
,
A. V.
, and
Bulgakova
,
N. M.
,
1998
, “
Gas-Dynamic Effects of the Interaction Between a Pulsed Laser-Ablation Plume and the Ambient Gas: Analogy With an Underexpanded Jet
,”
J. Phys. D: Appl. Phys.
,
31
, pp.
693
703
.10.1088/0022-3727/31/6/017
25.
Kelly
,
R.
, and
Miotello
,
A.
,
1996
, “
Comments on Explosive Mechanisms of Laser Sputtering
,”
Appl. Surf. Sci.
,
96-98
, pp.
205
215
.10.1016/0169-4332(95)00481-5
You do not currently have access to this content.