Micropart manipulation is an active research area encompassing a wide array of fields and applications. As the size of the parts to be manipulated by an automated system decreases, the dominant forces are different compared to macroscale ones. Thus, for accurately modeling and evaluating the motion dynamics of a micropart, microscale forces and their effects must be considered. This manuscript employs a nanomicroscale friction model based on the Kogut–Etsion model that along with microscale forces considers surface roughness and material hardness properties to identify the acceleration threshold that would cause a micropart to start sliding on a carrier surface or vertically detach from the carrier surface during gripperless manipulation in a dry environment. The microscale forces change significantly as a function of the surface roughness of the two contacting surfaces. The results indicate that there will always be critical acceleration values below which no sliding or detachment takes place. Also, for the same model parameters, the sliding acceleration is smaller than the detachment acceleration for softer materials and larger for harder materials. The sliding acceleration threshold is more sensitive to hardness changes at smaller surface roughness values as compared to larger surface roughness values. The material hardness has no effect on the detachment acceleration for the same surface roughness values. The knowledge of the acceleration thresholds and their relative magnitudes could be advantageously employed for the development of gripperless manipulation approaches for microcomponent or microdevice handling or for the development of microconveyor platforms for controlled micropart translocation.

References

References
1.
Gauthier
,
M.
, and
Régnier
,
S.
, eds.,
2010
,
Robotic Microassembly
,
IEEE Press
,
Hoboken, NJ
.
2.
Rollot
,
Y.
,
Regnier
,
S.
, and
Guinot
,
J.-C.
,
1999
, “
Simulation of Micro-Manipulation: Adhesion Forces and Specific Dynamic Models
,”
Int. J. Adhes. Adhes.
,
19
, pp.
35
48
.10.1016/S0143-7496(98)90055-0
3.
van Zwol
,
P. J.
,
Palasantzas
,
G.
, and
De Hosson
,
J. Th. M.
,
2008
, “
Influence of Surface Roughness on Capillary and Casimir Forces
,”
Proc. SPIE
,
6800
, p.
68000E
.10.1117/12.764436
4.
Savia
,
M.
, and
Koivo
,
H. N.
,
2009
, “
Contact Micromanipulation—Survey of Strategies
,”
IEEE/ASME Trans. Mechatron.
, Vol.
14
(
4
), pp.
504
514
.10.1109/TMECH.2008.2011986
5.
Tayebi
,
N.
, and
Polycarpou
,
A. A.
,
2003
, “
Modeling the Effect of Surface Roughness on Adhesion, Contact and Friction in Micro-Electro-Mechanical Systems (MEMS) Interfaces
,”
Proceedings of IMECE 03
,
ASME International Mechanical Engineering Congress
,
Washington, DC
.
6.
Fearing
,
R. S.
,
1995
, “
Survey of Sticking Effects for Micro Parts Handling
,”
International Conference on Intelligent Robots and Systems
, Vol.
2
.
7.
Zhou
,
S.-A.
,
2003
, “
On Forces in Microelectromechanical Systems
,”
Int. J. Eng. Sci.
,
41
, pp.
313
335
.10.1016/S0020-7225(02)00207-0
8.
Tambe
,
N. S.
, and
Bhushan
,
B.
,
2004
, “
Scale Dependence of Micro-Nano-Friction and Adhesion of MEMS/NEMS Materials, Coating and Lubricants
,”
Nanotechnology
15
, pp.
1561
1570
.10.1088/0957-4484/15/11/033
9.
Kogut
,
L.
, and
Etsion
,
I.
,
2004
, “
A Static Friction Model for Elastic-Plastic Contacting Rough Surfaces
,”
Trans. ASME J. Tribol.
,
126
(
1
), p.
34
.10.1115/1.1609488
10.
Rizwan
,
M.
, and
Shiakolas
,
P. S.
,
2011
, “
Motion Analysis of Micropart in Dry Friction Environment Due to Surface Excitation Considering Microscale Forces
,”
Trans. ASME J. Tribol.
,
133
(
4
), p.
041405
.10.1115/1.4004455
11.
Maradudin
,
A. A.
,
2007
,
Light Scattering and Nanoscale Surface Roughness
;
1st ed.
,
Springer
,
New York
.
12.
Greenwood
,
J. A.
, and
Williamson
,
J. B. P.
,
1966
, “
Contact of Nominally Flat Surface
,”
Proc. R. Soc. London, Ser. A
,
A295
, pp.
300
319
.10.1098/rspa.1966.0242
13.
Fuller
,
K. N. G.
, and
Tabor
,
D.
, “
The Effect of Surface Roughness on the Adhesion of Elastic Solids
,”
Proc. R. Soc. London, Ser. A
,
345
(
1642
), pp.
327
342
.10.1098/rspa.1975.0138
14.
Johnson
,
K. L.
,
Contact Mechanics
,
Cambridge University Press
,
Cambridge
,
1985
.
15.
Johnson
,
K. L.
,
Kendall
,
K.
, and
Roberts
,
A. D.
,
1971
, “
Surface Energy and Contact of Elastic Solids
,”
Proc. R. Soc. London, Ser. A
,
324
(
1558
), pp.
301
313
.10.1098/rspa.1971.0141
16.
Derjaguin
,
B. V.
,
Muller
,
V. M.
, and
Toporov
,
Y. U. P.
,
1975
, “
Effect of Contact Deformation on the Adhesion of Particles
,”
J. Colloid Interface Sci.
,
53
(
2
), pp.
314
326
.10.1016/0021-9797(75)90018-1
17.
Maugis
,
D.
,
1992
, “
Adhesion of Spheres: The JKR-DMT Transition Using a Dugdale Model
,”
J. Colloid Interface Sci.
,
150
(
1
), pp.
243
269
.10.1016/0021-9797(92)90285-T
18.
Chang
,
W. R.
,
Etsion
,
I.
, and
Bogy
,
D. B.
,
1987
, “
An Elastic-Plastic Model for the Contact of Rough Surfaces
,”
Trans. ASME J. Tribol.
,
109
(
2
), pp.
257
263
.10.1115/1.3261348
19.
Chang
,
W. R.
,
Etsion
,
I.
, and
Bogy
,
D. B.
,
1988
, “
Adhesion Model for Metallic Rough Surfaces
,”
Trans. ASME J. Tribol.
,
110
(
1
), p.
50
.10.1115/1.3261574
20.
Chang
,
W. R.
,
Etsion
,
I.
, and
Bogy
,
D. B.
,
1988
, “
Static Friction Coefficient Model for Rough Metallic Surfaces
,”
Trans. ASME J. Tribol.
,
110
(
1
), pp.
57
63
.10.1115/1.3261575
21.
Zhao
,
Y.
,
Maietta
,
D. M.
, and
Chang
,
L.
,
2000
, “
An Asperity Microcontact Model Incorporating the Transition From Elastic Deformation to Fully Plastic Flow
,”
Trans. ASME J. Tribol.
,
122
(
1
), p.
86
.10.1115/1.555332
22.
Kogut
,
L.
, and
Etsion
,
I.
,
2003
, “
Adhesion in Elastic–Plastic Spherical Microcontact
,”
J. Colloid Interface Sci.
,
261
, pp.
372
378
.10.1016/S0021-9797(03)00071-7
You do not currently have access to this content.