Interdisciplinary research efforts have started focusing on the development of multiscale models and development of designer multiscale surfaces exhibiting specific properties at different scales for a specific purpose. With the rapid evolution of these new engineered surfaces for microelectromechanical systems (MEMS), microfluidics, etc., there is a strong need for developing tools to measure and characterize these surfaces at different scales. In order to obtain all meaningful details of the surface at various required scales, one is left with the only option of measuring the surface using multiple technologies using a combination of instruments. The majority of hardware-based approaches focus on the development of systems housing multiple technologies/capabilities into a single frame. These systems enable the user to obtain different surface maps using various technologies, but the user does not readily have the ability to combine all the obtained data into one single dataset. The effective approach toward multiscale measurement and characterization would be to use the individual measurement tools and finding a method to relate the individual coordinate systems and use an offline virtual tool to unify, manipulate, segment, merge, and retrieve data. Shape primitives and focus-based fusion strategies cannot be used as every data point in the data sets under consideration has to be treated as essentially at optimal focus. A multiscale data fusion strategy results in edge effects on nonplanar and high aspect ratio surfaces. An optimized fusion strategy, the “FWR method,” for the surface metrology domain is proposed where the subimages obtained from discrete wavelet frame (DWF) were separated into three regimes—form, waviness, and roughness—and fusion was not performed on subimages in the form regime. This approach effectively eliminates the edge effects. Individual data-point-level fusion was successfully demonstrated on Fresnel microlens array surface data as a case study of a nondirectional engineered surface with high aspect ratio.

References

References
1.
Hansen
,
H. N.
,
Carneiro
,
K.
,
Haitjema
,
H.
, and
Chiffre
,
L. D.
,
2006
, “
Dimensional Micro and Nano Metrology
,”
Ann. CIRP
,
55
(
Pt 2
), pp.
721
743
.10.1016/j.cirp.2006.10.005
2.
Koch
,
K.
,
Bhushan
,
B.
, and
Barthlott
,
W.
,
2009
, “
Multifunctional Surface Structures of Plants: An inspiration for Biomimetics
,”
Prog. Mater. Sci.
,
54
, pp.
137
178
.10.1016/j.pmatsci.2008.07.003
3.
Northern
,
M. T.
, and
Turner
,
K. L.
,
2006
, “
Meso-Scale Adhesion Testing of Integrated Micro- and Nano-Scale Structures
,”
Sensor. Actuator. A
,
130–131
, pp.
583
587
.10.1016/j.sna.2005.10.032
4.
Bewilogua
,
K.
,
Brauer
,
G.
,
Dietz
,
A.
,
Gabler
,
J.
,
Goch
,
G.
,
Karpuschewski
,
B.
, and
Szyszka
,
B.
,
2009
, “Surface technology for automotive engineering,”
CIRP Annals, Manufacturing Technology
,
58
(
2
), pp.
608
627
.
5.
Stout
,
K. J.
, and
Blunt
,
L.
,
2001
, “
A Contribution to the Debate on Surface Classifications—Random, Systematic, Unstructured, Structured and Engineered
,”
Int. J. Mach. Tool Manuf.
,
41
, pp.
2039
2044
.10.1016/S0890-6955(01)00069-4
6.
Zygo.com
,
2011
, “
ZYGO Metrology Services Division
,” February 2, 2011, Available at www.zygo.com/?/met/profilers/
7.
Werthinc.com
,
2011
, “
Werth Messtechnik
,” February 2, 2011, Available at www.werthinc.com
8.
Frtofamerica.com
,
2011
, “
FRT of America, LLC
,” February 2, 2011, available at www.frtofamerica.com/us/products/microglider-series/microglider/
9.
Topfer
,
S. C. N.
,
Nehse
,
U.
, and
Linb
,
G.
,
2007
, “
Automated Inspections for Dimensional Micro- and Nanometrology
,”
Measurement
,
40
, pp.
243
254
.10.1016/j.measurement.2006.06.010
10.
Kayser
,
D.
,
Bothe
,
T.
, and
Osten
,
W.
, 2004, “
Scaled Topometry in a Multisensor Approach
,”
Soc. Photo-Opt. Instru.
,
43
(
10
), pp.
2469
2477
.10.1117/1.1788690
11.
Osten
,
W.
,
Kayser
,
D.
,
Bothe
,
T.
, and
Juptner
,
W.
,
2000
, “
High Resolution Measurement of Extended Technical Surfaces With Scalable Topometry
,”
Proc. SPIE 4101, Laser Interferometry X: Techniques and Analysis
,
168
, pp. 166–172.10.1117/12.498445
12.
Solarius-inc.com
, “
Solarius Development Inc; c2003–07
,” February 2, 2011, www.solarius-inc.com/html/sensofar.html
13.
Bruker
, “Bruker AXS; c2011, February 2,
2011
, www.bruker-axs.de/stylus_and_optical_metrology.html
14.
WITec GmbH [Internet]. Confocal Raman and Atomic Force Microscope alpha500 (cited February 2, 2011), available at http://www.witec.de/en/products/raman/alpha500/
15.
Geomagic [Internet]. Geomagic Studio Overview (cited February 2, 2011), available at http://www.geomagic.com/en/products/studio/
16.
Data fusion lexicon, Data Fusion Subpanel of the Joint Directors of Laboratories. Technical Panel for C3. U.S. Department of Defense. 1991. Available at http://www.dtic.mil/dtic/tr/fulltext/u2/a529661.pdf
17.
Ranchin
,
T.
, and
Wald
,
L.
,
2007
, “
Data Fusion of Remotely Sensed Images Using the Wavelet Transform: The ARSIS Solution
,”
Proc. SPIE
,
3169
, pp.
272
280
.10.1117/12.279691
18.
Chibani
,
Y.
,
2006
, “
Additive Integration of SAR Features Into Multispectral SPOT Images by Means of the à Trous Wavelet Decomposition
,”
ISPRS Journal of Photogrammetry and Remote Sensing
,
60
(5), pp.
306
314
.10.1016/j.isprsjprs.2006.05.001
19.
Artigas
,
R.
,
Pinto
,
A.
, and
Laguarta
,
F.
,
1999
, “
Three-Dimensional Micro-Measurements on Smooth and Rough Surfaces With a New Confocal Optical Profiler
,”
Proc. SPIE 3824, Optical Measurement Systems for Industrial Inspection
,
93
, pp.
93
104
.10.1117/12.364243
20.
Shaw
,
L.
, and
Weckenmann
,
A.
,
2010
, “
Optical 3D-Characterization for Multiscale Workpieces
,”
10th International Symposium on Measurement and Quality Control
, September, 5–9.
21.
Weckenmann
,
A.
,
Jiang
,
X.
,
Sommer
,
K. D.
,
Neuschaefer-Rube
,
U.
,
Seewig
,
J.
,
Shaw
,
L.
, and
Estler
,
T.
,
2009
, “
Multisensor Data Fusion in Dimensional Metrology
,”
Ann. CIRP Manuf. Tech.
,
58
, pp.
701
721
.10.1016/j.cirp.2009.09.008
22.
Ramasamy
,
S. K.
,
2011
, “
Multi-Scale Data Fusion for Surface Metrology
,” Ph.D. thesis, University of North Carolina at Charlotte, Charlotte, NC.
23.
Ramasamy
,
S. K.
,
Raja
,
J.
, and
Boudreau
,
B. D.
,
2012
, “
Multi-Sensor Data Fusion in Surface and Dimensional Metrology Domains
,”
Proceedings of 40th North American Manufacturing Research Conference
, University of Notre Dame, IN, June 2012.
24.
Sheppard
,
C. J. R.
, and
Wilson
,
T.
,
1979
, “
Effect of Spherical Aberration on the Imaging Properties of Scanning Optical Microscopes
,”
Appl. Opt.
,
18
(
7
), pp.
1058
1063
.10.1364/AO.18.001058
25.
Doi
,
T.
,
Vorburger
,
T.
, and
Sullivan
,
P.
,
1999
, “
Effects of Defocus and Algorithm on Optical Step Height Calibration
,”
Prec. Eng.
,
23
, pp.
135
143
.10.1016/S0141-6359(99)00002-1
26.
Donoho
,
D. L.
,
1995
, “
De-Noising by Soft-Thresholding
,”
IEEE Trans. Inform. Theory
,
41
(
3
), pp.
613
627
.10.1109/18.382009
27.
Krim
,
H.
,
Tucker
,
D.
,
Mallat
,
S.
, and
Donoho
,
D. L.
,
1999
, “
On Denoising and Best Signal Representation
,”
IEEE Trans. Inform. Theory
,
45
(
7
), pp.
2225
2238
.10.1109/18.796365
28.
Raol
,
J. R.
,
2009
, “Performance Evaluation of Image Based Data Fusion Systems,”
Multi-Sensor Data Fusion with MATLAB
, CRC Press, Boca Raton, FL, pp. 415–476.
29.
Wang
,
M. Y.
,
Fitzpatrick
,
J. M.
, and
Maurer
,
C. R.
,
1995
, “
Design of Fiducials for Accurate Registration of CT and MR Volume Images
,”
Proc. SPIE Medical Imaging 1995
,
2434
, pp.
96
108
.10.1117/12.208682
30.
Besl
,
P. J.
, and
McKay
,
N. D.
,
1992
, “
A Method for Registration of 3-D Shapes
,”
IEEE Trans. Pattern Anal.
,
14
(
2
), pp.
239
256
.10.1109/34.121791
31.
Mallat
,
S.
,
1989
, “
A Theory for Multi Resolution Signal Decomposition: The Wavelet Representation
,”
IEEE Trans. Pattern Anal.
,
11
, pp.
674
693
.10.1109/34.192463
32.
Shensa
,
M. J.
,
1992
, “
Discrete Wavelet Transforms: Wedding the à Trous and Mallat Algorithms
,”
IEEE Trans. Signal Proces.
,
40
, pp.
2464
2482
.10.1109/78.157290
33.
Raja
,
J.
,
Muralikrishnan
,
B.
, and
Fu
,
S.
,
2002
, “
Recent Advances in Separation of Roughness, Waviness and Form
,”
Precision Engineering
,
26
(
2
), pp.
222
235
.10.1016/S0141-6359(02)00103-4
34.
Chen
,
H.
,
Liu
,
Y.
, and
Wang
,
Y.
,
2008
, “A Novel Image Fusion Method Based on Wavelet Packet Transform,”
IEEE International Symposium on Knowledge Acquisition and Modeling
, pp. 462–465.10.1109/KAMW.2008.4810524
35.
Song
,
Y.
,
Li
,
M.
,
Li
,
Q.
, and
Sun
L.
,
2006
, “
A New Wavelet Based Multi-Focus Image Fusion Scheme and Its Application on Optical Microscopy
,”
Proceedings of the 2006 IEEE International Conference on Robotics and Biomimetics
, Kunming, China, pp.
401
405
.
36.
Li
,
H.
,
Guo
,
L.
, and
Liu
,
H.
,
2005
, “
Current Research on Wavelet-Based Image Fusion Algorithms, Multisensor, Multisource Information Fusion: Architectures, Algorithms, and Applications
,”
2005 Proc. SPIE
,
5813
, pp.
360
367
.10.1117/12.602659
You do not currently have access to this content.