We present an approach for producing complex nanoscale patterns by integrating computer-aided design (CAD) geometry processing with an atomic force microscope (AFM) based nanoindentation process. Surface modification is achieved by successive nanoindentation using a vibrating tip. By incorporating CAD geometry, this approach provides enhanced design and patterning capability for producing geometric features of both straight lines and freeform B-splines. This method automatically converts a pattern created in CAD software into a lithography plan for successive nanoindentation. For ensuring reliable lithography, key machining parameters including the interval of nanoindentation and the depth of nanogrooves have been investigated, and a proper procedure for determining the parameters has been provided. Finally, the automated nanolithography has been demonstrated on poly methylmethacrylate (PMMA) samples. It shows the robustness of complex pattern fabrication via the CAD integrated, AFM based nanoindentation approach.

References

References
1.
Ngunjiri
,
J.
, and
Garno
,
J. C.
,
2008
, “
AFM-Based Lithography for Nanoscale Protein Assays
,”
Anal. Chem.
,
80
(
5
), pp.
1361
1369
. 10.1021/ac086049l
2.
Schumacher
,
H.
,
Keyser
,
U.
,
Zeitler
,
U.
,
Haug
,
R.
, and
Eberl
,
K.
,
2000
, “
Controlled Mechanical AFM Machining of Two-Dimensional Electron Systems: Fabrication of a Single-Electron Transistor
,”
Physica E (Amsterdam)
,
6
(
1-4
), pp.
860
863
.10.1016/S1386-9477(99)00230-1
3.
Do
,
Q. T.
,
Clemens
,
H.
, and
Lorke
,
A.
,
2003
, “
Coulomb Blockade Systems Fabricated by Atomic Force Microscopy
,”
Third IEEE Conference on Nanotechnology
, Vol.
2
, pp.
774
777
.
4.
Tseng
,
A. A.
,
Notargiacomo
,
A.
, and
Chen
,
T. P.
,
2005
, “
Nanofabrication by Scanning Probe Microscope Lithography: A Review
,”
J. Vac. Sci. Technol. B.
24
, pp.
877
897
. 10.1116/1.1926293
5.
Binnig
,
G.
,
Quate
,
C. F.
, and
Gerber
,
C.
,
1986
, “
Atomic Force Microscope
,”
Phys. Rev. Lett.
,
56
(
9
), pp.
930
933
.10.1103/PhysRevLett.56.930
6.
Jung
,
T.
,
Moser
,
A.
,
Hug
,
H.
,
Brodbeck
,
D.
,
Hofer
,
R.
,
Hidber
,
H.
, and
Schwarz
,
U.
,
1992
, “
The Atomic Force Microscope Used as a Powerful Tool for Machining Surfaces
,”
Ultramicroscopy
42
, pp.
1446
1451
.10.1016/0304-3991(92)90464-U
7.
Heyde
,
M.
,
Rademann
,
K.
,
Cappella
,
B.
,
Geuss
,
M.
,
Sturm
,
H.
,
Spangenberg
,
T.
, and
Niehus
,
H.
,
2001
, “
Dynamic Plowing Nanolithography on Polymethylmethacrylate Using an Atomic Force Microscope
,”
Rev. Sci. Instrum.
,
72
, pp.
136
141
.10.1063/1.1326053
8.
Johannes
,
M.
,
Kuniholm
,
J.
,
Cole
,
D.
, and
Clark
,
R.
,
2006
, “
Automated CAD/CAM-Based Nanolithography Using a Custom Atomic Force Microscope
,”
IEEE. Trans. Autom. Sci. Eng.
,
3
(
3
), pp.
236
239
.10.1109/TASE.2006.875535
9.
Johannes
,
M.
,
Cole
,
D.
, and
Clark
,
R.
,
2007
, “
Three-Dimensional Design and Replication of Silicon Oxide Nanostructures Using an Atomic Force Microscope
,”
Nanotechnology
,
18
, p.
345304
.10.1088/0957-4484/18/34/345304
10.
Klehn
,
B.
, and
Kunze
,
U.
,
1999
, “
Nanolithography With an Atomic Force Microscope by Means of Vector-Scan Controlled Dynamic Plowing
,”
J. Appl. Phys.
,
85
, pp.
3897
3903
.10.1063/1.369761
11.
Wendel
,
M.
,
Kuhn
,
S.
,
Lorenz
,
H.
,
Kotthaus
,
J.
, and
Holland
,
M.
,
1994
, “
Nanolithography With an Atomic Force Microscope for Integrated Fabrication of Quantum Electronic Devices
,”
Appl. Phys. Lett.
,
65
(
14
), pp.
1775
1777
.10.1063/1.112914
12.
Oesterschulze
,
E.
,
Malave
,
A.
,
Keyser
,
U.
,
Paesler
,
M.
, and
Haug
,
R.
,
2002
, “
Diamond Cantilever With Integrated Tip for Nanomachining
,”
Diamond Relat. Mater.
,
11
(
3-6
), pp.
667
671
.10.1016/S0925-9635(01)00542-8
13.
Fang
,
T.
, and
Chang
,
W.
,
2003
, “
Effects of AFM-Based Nanomachining Process on Aluminum Surface
,”
J. Phys. Chem. Solids
,
64
(
6
), pp.
913
918
.10.1016/S0022-3697(02)00436-5
14.
Schumacher
,
H.
,
Keyser
,
U.
,
Zeitler
,
U.
,
Haug
,
R.
, and
Eberl
,
K.
,
1999
, “
Nanomachining of Mesoscopic Electronic Devices Using an Atomic Force Microscope
,”
Appl. Phys. Lett.
,
75
, pp.
1107
1109
.10.1063/1.124611
15.
Cappella
,
B.
, and
Sturm
,
H.
,
2002
, “
Comparison Between Dynamic Plowing Lithography and Nanoindentation Methods
,”
J. Appl. Phys.
,
91
, p.
506
.10.1063/1.1421632
16.
Bouchiat
,
V.
, and
Esteve
,
D.
,
1996
, “
Lift-Off Lithography Using an Atomic Force Microscope
,”
Appl. Phys. Lett.
,
69
, pp.
3098
3100
.10.1063/1.117317
17.
Munz
,
M.
,
Cappella
,
B.
,
Sturm
,
H.
,
Geuss
,
M.
, and
Schulz
,
E.
,
2003
, “
Materials Contrasts and Nanolithography Techniques in Scanning Force Microscopy (SFM) and their Application to Polymers and Polymer Composites
,”
Filler-Reinforced Elastomers/Sanning Force Microscopy
, Vol.
164
,
Advances in Polymer Science, Springer
,
Berlin/Heidelberg
, pp.
87
210
. 10.1007/b11055.
18.
Wendel
,
M.
,
Irmer
,
B.
,
Cortes
,
J.
,
Kaiser
,
R.
,
Lorenz
,
H.
,
Kotthaus
,
J.
,
Lorke
,
A.
, and
Williams
,
E.
,
1996
, “
Nanolithography With an Atomic Force Microscope
,”
Superlattices Microstruct.
,
20
(
3
), pp.
349
356
.10.1006/spmi.1996.0088
19.
Wiesauer
,
K.
, and
Springholz
,
G.
,
2000
, “
Fabrication of Semiconductor Nanostructures by Nanoindentation of Photoresist Layers Using Atomic Force Microscopy
,”
J. Appl. Phys.
,
88
(
12
), pp.
7289
7297
.10.1063/1.1324693
20.
Farin
,
G.
,
2002
,
Curves and Surfaces for CAGD: A Practical Guide
,
5th ed.
,
Morgan Kaufmann
,
Burlington, MA
.
You do not currently have access to this content.