Directional dry adhesives are inspired by animals such as geckos and are a particularly useful technology for climbing applications. Previously, they have generally been manufactured using photolithographic processes. This paper presents a micromachining process that involves making cuts in a soft material using a sharp, lubricated tool to create closely spaced negative cavities of a desired shape. The machined material becomes a mold into which an elastomer is cast to create the directional adhesive. The trajectory of the tool can be varied to avoid plastic flow of the mold material that may adversely affect adjacent cavities. The relationship between tool trajectory and resulting cavity shape is established through modeling and process characterization experiments. This micromachining process is much less expensive than previous photolithographic processes used to create similar features and allows greater flexibility with respect to the microscale feature geometry, mold size, and mold material. The micromachining process produces controllable, directional adhesives, where the normal adhesion increases with shear loading in a preferred direction. This is verified by multi-axis force testing on a flat glass substrate. Upon application of a post-treatment to decrease the roughness of the engaging surfaces of the features after casting, the adhesives significantly outperform comparable directional adhesives made from a photolithographic mold.

References

References
1.
Fearing
,
R.
,
2012
, “
Gecko Adhesion Bibliography
,” http://robotics.eecs.berkeley.edu/ronf/Gecko/gecko-biblio.html
2.
Murphy
,
M. P.
, and
Sitti
,
M.
,
2007
, “
Waalbot: An Agile Small-Scale Wall-Climbing Robot Utilizing Dry Elastomer Adhesives
,”
IEEE/ASME Trans. Mech.
,
12
(
3
), pp.
330
338
.10.1109/TMECH.2007.897277
3.
Kim
,
S.
,
Spenko
,
M.
,
Trujillo
,
S.
,
Heyneman
,
B.
,
Santos
,
D.
, and
Cutkosky
,
M. R.
,
2008
, “
Smooth Vertical Surface Climbing With Directional Adhesion
,”
IEEE Trans. Robot.
,
24
(
1
), pp.
65
74
.10.1109/TRO.2008.924946
4.
Daltorio
,
K. A.
,
Wei
,
T. E.
,
Horchler
,
A. D.
,
Southard
,
L.
,
Wile
,
G. D.
,
Quinn
,
R. D.
,
Gorb
,
S. N.
, and
Ritzmann
,
R. E.
,
2009
, “
Mini-Whegs TM Climbs Steep Surfaces Using Insect-Inspired Attachment Mechanisms
,”
Int. J. Robot. Res.
,
28
(
2
), pp.
285
302
.10.1177/0278364908095334
5.
Krahn
,
J.
,
Liu
,
Y.
,
Sadeghi
,
A.
, and
Menon
,
C.
,
2011
, “
A Tailless Timing Belt Climbing Platform Utilizing Dry Adhesives With Mushroom Caps
,”
Smart Mater. Struct.
,
20
(
11
), p.
115021
.10.1088/0964-1726/20/11/115021
6.
Murphy
,
M. P.
,
Kute
,
C.
,
Mengüç
,
Y.
, and
Sitti
,
M.
,
2011
, “
Waalbot II: Adhesion Recovery and Improved Performance of a Climbing Robot Using Fibrillar Adhesives
,”
Int. J. Robot. Res.
,
30
(
1
), pp.
118
133
.10.1177/0278364910382862
7.
Hawkes
,
E. W.
,
Eason
,
E. V.
,
Asbeck
,
A. T.
, and
Cutkosky
,
M. R.
,
2013
, “
The Gecko's Toe: Scaling Directional Adhesives for Climbing Applications
,”
IEEE/ASME Trans. Mech.
, 18(2), pp. 518–526.10.1109/TMECH.2012.2209672
8.
Li
,
Y.
,
Ahmed
,
A.
,
Sameoto
,
D.
, and
Menon
,
C.
,
2012
, “
Abigaille II: Toward the Development of a Spider-Inspired Climbing Robot
,”
Robotica
,
30
(
01
), pp.
79
89
.10.1017/S0263574711000373
9.
Northen
,
M. T.
,
Greiner
,
C.
,
Arzt
,
E.
, and
Turner
,
K. L.
,
2008
, “
A Gecko-Inspired Reversible Adhesive
,”
Adv. Mater.
,
20
(
20
), pp.
3905
3909
.10.1002/adma.200801340
10.
Jeong
,
H. E.
,
Kwak
,
M. K.
, and
Suh
,
K. Y.
,
2010
, “
Stretchable, Adhesion-Tunable Dry Adhesive by Surface Wrinkling
,”
Langmuir
,
26
(
4
), pp.
2223
2226
.10.1021/la904290g
11.
Sitti
,
M.
, and
Fearing
,
R.
,
2003
, “
Synthetic Gecko Foot-Hair Micro/Nano-Structures as Dry Adhesives
,”
J. Adhes. Sci. Technol.
,
17
(
8
), pp.
1055
1073
.10.1163/156856103322113788
12.
Autumn
,
K.
,
Dittmore
,
A.
,
Santos
,
D.
,
Spenko
,
M.
, and
Cutkosky
,
M.
,
2006
, “
Frictional Adhesion: A New Angle on Gecko Attachment
,”
J. Exp. Biol.
,
209
(
18
), pp.
3569
3579
.10.1242/jeb.02486
13.
del Campo
,
A.
,
Greiner
,
C.
, and
Arzt
,
E.
,
2007
, “
Contact Shape Controls Adhesion of Bioinspired Fibrillar Surfaces
,”
Langmuir
,
23
(
20
), pp.
10235
10243
.10.1021/la7010502
14.
Lee
,
J.
,
Fearing
,
R. S.
, and
Komvopoulos
,
K.
,
2008
, “
Directional Adhesion of Gecko-Inspired Angled Microfiber Arrays
,”
Appl. Phys. Lett.
,
93
(
19
), p.
191910
.10.1063/1.3006334
15.
Qu
,
L.
,
Dai
,
L.
,
Stone
,
M.
,
Xia
,
Z.
, and
Wang
,
Z. L.
,
2008
, “
Carbon Nanotube Arrays With Strong Shear Binding-On and Easy Normal Lifting-Off
,”
Science
,
322
(
5899
), pp.
238
242
.10.1126/science.1159503
16.
Jeong
,
H. E.
,
Lee
,
J.-K.
,
Kim
,
H. N.
,
Moon
,
S. H.
, and
Suh
,
K. Y.
,
2009
, “
A Nontransferring Dry Adhesive With Hierarchical Polymer Nanohairs
,”
Proc. Natl. Acad. Sci. U.S.A
,
106
(
14
), pp.
5639
5644
.10.1073/pnas.0900323106
17.
Murphy
,
M. P.
,
Aksak
,
B.
, and
Sitti
,
M.
,
2009
, “
Gecko-Inspired Directional and Controllable Adhesion
,”
Small
,
5
(
2
), pp.
170
175
.10.1002/smll.200801161
18.
Parness
,
A.
,
Soto
,
D.
,
Esparza
,
N.
,
Gravish
,
N.
,
Wilkinson
,
M.
,
Autumn
,
K.
, and
Cutkosky
,
M.
,
2009
, “
A Microfabricated Wedge-Shaped Adhesive Array Displaying Gecko-Like Dynamic Adhesion, Directionality and Long Lifetime
,”
J. R. Soc., Interface
,
6
(
41
), pp.
1223
1232
.10.1098/rsif.2009.0048
19.
Sameoto
,
D.
, and
Menon
,
C.
,
2009
, “
Direct Molding of Dry Adhesives With Anisotropic Peel Strength Using an Offset Lift-Off Photoresist Mold
,”
J. Micromech. Microeng.
,
19
(
11
), p.
115026
.10.1088/0960-1317/19/11/115026
20.
Kwak
,
M. K.
,
Jeong
,
H.-E.
,
Kim
,
T.-i.
,
Yoon
,
H.
, and
Suh
,
K. Y.
,
2010
, “
Bio-Inspired Slanted Polymer Nanohairs for Anisotropic Wetting and Directional Dry Adhesion
,”
Soft Matter
,
6
(
9
), pp.
1849
1857
.10.1039/b924056j
21.
Sameoto
,
D.
, and
Menon
,
C.
,
2010
, “
Recent Advances in the Fabrication and Adhesion Testing of Biomimetic Dry Adhesives
,”
Smart Mater. Struct.
,
19
(
10
), p.
103001
.10.1088/0964-1726/19/10/103001
22.
Gillies
,
A. G.
, and
Fearing
,
R. S.
,
2011
, “
Shear Adhesion Strength of Thermoplastic Gecko-Inspired Synthetic Adhesive Exceeds Material Limits
,”
Langmuir
,
27
(
18
), pp.
11278
11281
.10.1021/la202085j
23.
Yu
,
J.
,
Chary
,
S.
,
Das
,
S.
,
Tamelier
,
J.
,
Pesika
,
N. S.
,
Turner
,
K. L.
, and
Israelachvili
,
J. N.
,
2011
, “
Gecko-Inspired Dry Adhesive for Robotic Applications
,”
Adv. Funct. Mater.
,
21
(
16
), pp.
3010
3018
.10.1002/adfm.201100493
24.
Jin
,
K.
,
Tian
,
Y.
,
Erickson
,
J. S.
,
Puthoff
,
J.
,
Autumn
,
K.
, and
Pesika
,
N. S.
,
2012
, “
Design and Fabrication of Gecko-Inspired Adhesives
,”
Langmuir
,
28
(13), pp. 5737–5742.10.1021/la204040p
25.
Hawkes
,
E. W.
,
Ulmen
,
J.
,
Esparza
,
N.
, and
Cutkosky
,
M. R.
,
2011
, “
Scaling Walls: Applying Dry Adhesives to the Real World
,”
Proceedings IEEE/RSJ International Conference on Intelligent Robots and Systems
, pp.
5100
5106
.
26.
Soto
,
D.
,
Hill
,
G.
,
Parness
,
A.
,
Esparza
,
N.
,
Cutkosky
,
M.
, and
Kenny
,
T.
,
2010
, “
Effect of Fibril Shape on Adhesive Properties
,”
Appl. Phys. Lett.
,
97
(
5
), p.
053701
.10.1063/1.3464553
27.
Gong
,
J.
,
Lipomi
,
D. J.
,
Deng
,
J.
,
Nie
,
Z.
,
Chen
,
X.
,
Randall
,
N. X.
,
Nair
,
R.
, and
Whitesides
,
G. M.
,
2010
, “
Micro- and Nanopatterning of Inorganic and Polymeric Substrates by Indentation Lithography
,”
Nano Lett.
,
10
, pp.
2702
2708
.10.1021/nl101675s
28.
Autumn
,
K.
,
Sitti
,
M.
,
Liang
,
Y. A.
,
Peattie
,
A. M.
,
Hansen
,
W. R.
,
Sponberg
,
S.
,
Kenny
,
T. W.
,
Fearing
,
R.
,
Israelachvili
,
J. N.
, and
Full
,
R. J.
,
2002
, “
Evidence for van der Waals Adhesion in Gecko Setae
,”
Proc. Natl. Acad. Sci. U.S.A
,
99
(
19
), pp.
12252
12256
.10.1073/pnas.192252799
29.
Hill
,
R.
,
Lee
,
E. H.
, and
Tupper
,
S. J.
,
1947
, “
The Theory of Wedge Indentation of Ductile Materials
,”
Proc. R. Soc. Lond. A
,
188
(
1013
), pp.
273
289
.10.1098/rspa.1947.0009
30.
Hill
,
R.
,
1950
,
The Mathematical Theory of Plasticity
,
1st ed.
,
Clarendon Press
,
Oxford
.
31.
Ernst
,
H.
, and
Merchant
,
M. E.
,
1941
, “
Chip Formation, Friction and High Quality Machined Surfaces
,”
Surface Treatment of Metals
,
American Society for Metals
,
Cleveland, OH
, pp.
299
378
.
32.
Merchant
,
M. E.
,
1945
, “
Mechanics of the Metal Cutting Process. I. Orthogonal Cutting and a Type 2 Chip
,”
J. Appl. Phys.
,
16
(
5
), pp.
267
275
.10.1063/1.1707586
33.
Merchant
,
M. E.
,
1945
, “
Mechanics of the Metal Cutting Process. II. Plasticity Conditions in Orthogonal Cutting
,”
J. Appl. Phys.
,
16
(
6
), pp.
318
324
.10.1063/1.1707596
34.
Johnson
,
W.
,
Sowerby
,
R.
, and
Venter
,
R. D.
,
1982
,
Plane-Strain Slip-Line Fields for Metal-Deformation Processes
,
Pergamon Press
,
Oxford
.
35.
Bodsworth
,
C.
,
Halling
,
J.
, and
Barton
,
J. W.
,
1957
, “
The Use of Paraffin Wax as a Model Material to Simulate the Plastic Deformation of Metals
,”
J. Iron Steel Inst., London
185
, pp.
375
383
.
36.
Bitans
,
K.
, and
Brown
,
R. H.
,
1965
, “
An Investigation of the Deformation in Orthogonal Cutting
,”
Int. J. Mach. Tool Des. Res.
,
5
(
3
), pp.
155
165
.10.1016/0020-7357(65)90023-5
37.
Meguid
,
S. A.
, and
Collins
,
I. F.
,
1977
, “
On the Mechanics of the Oblique Cutting of Metal Strips With Knife-Edged Tools
,”
Int. J. Mech. Sci.
,
19
(
6
), pp.
361
371
.10.1016/0020-7403(77)90089-3
38.
Hill
,
R.
, and
Lee
,
E. H.
,
1946
, “
The Theory of Wedge Penetration at Oblique Incidence and Its Application to the Calculation of Forces on a Yawed Shot Impacting on Armour Plate at Any Angle
,” Theoretical Research Report No. 1/46, UK Ministry of Supply Armament Research Department.
39.
Li
,
X.
,
Yu
,
H.
,
Xu
,
J.
,
Liu
,
A.
, and
Lv
,
H.
,
2009
, “
Model of Micro-Cutting and Analysis of Micro Cutting Force
,”
Proceedings IEEE International Conference on Mechatronics and Automation
, pp.
1541
1545
.
40.
Johnson
,
W.
, and
Mellor
,
P. B.
,
1973
,
Engineering Plasticity
,
Van Nostrand Reinhold Co.
,
London
.
41.
Childs
,
T. H. C.
, and
Rowe
,
G. W.
,
1973
, “
Physics in Metal Cutting
,”
Rep. Prog. Phys.
,
36
(
3
), pp.
223
288
.10.1088/0034-4885/36/3/001
42.
Molinari
,
A.
, and
Moufki
,
A.
,
2008
, “
The Merchant's Model of Orthogonal Cutting Revisited: A New Insight Into the Modeling of Chip Formation
,”
Int. J. Mech. Sci.
,
50
(
2
), pp.
124
131
.10.1016/j.ijmecsci.2007.07.015
43.
Hirst
,
W.
, and
Howse
,
M. G. J. W.
,
1969
, “
The Indentation of Materials by Wedges
,”
Proc. R. Soc. Lond. A
,
311
(
1506
), pp.
429
444
.10.1098/rspa.1969.0126
44.
Marinello
,
F.
,
Bariani
,
P.
,
Savio
,
E.
,
Horsewell
,
A.
, and
De Chiffre
,
L.
,
2008
, “
Critical Factors in SEM 3D Stereo Microscopy
,”
Meas. Sci. Technol.
,
19
(
6
), p.
065705
.10.1088/0957-0233/19/6/065705
45.
Bhushan
,
B.
,
1999
,
Principles and Applications of Tribology
,
Wiley
,
New York
.
46.
Bhushan
,
B.
, ed.,
2010
,
Springer Handbook of Nanotechnology
,
3rd ed.
,
Springer
,
Berlin
.
47.
Santos
,
D.
,
Spenko
,
M.
,
Parness
,
A.
,
Kim
,
S.
, and
Cutkosky
,
M.
,
2007
, “
Directional Adhesion for Climbing: Theoretical and Practical Considerations
,”
J. Adhes. Sci. Technol.
,
21
(
12–13
), pp.
1317
1341
.10.1163/156856107782328399
You do not currently have access to this content.