This article introduces recent developments and challenges related to magnetic resonance imaging (MRI)-compatible medical devices. Recent advances in fluid-powered medical devices are described, including a needle steering robot for neurosurgery and a haptic device for hemiplegia rehabilitation. Recent three-dimensional printing technologies for fabricating integrated fluid-powered robots are also reported. The use of additive manufacturing conjoined with modern digital imaging techniques allow for the customization of components, a trait that is generally needed in medical implants and devices. Furthermore, the materials that are available in additive processes allow for direct end-use production of customized components and devices. In addition, the polymer-based materials have an inherently low permeability, allowing for use in an MRI environment while not causing imaging interference. Presently, selective laser sintering (SLS), stereolithography, and extrusion processes illustrate and suggest that they offer the greatest promise in MRI compatible end-use components. Future work is aimed at using Additive Manufacturing (AM) to develop inherently safe, compact, MRI compatible medical devices.

References

1.
Masamune
,
K.
, et al,
1995
,
“Development of an MRI-Compatible Needle Insertion Manipulator for Stereotactic Neurosurgery,”
J. Image Guid. Surg.
,
1
, pp.
242
-
248
.
2.
Tsekos
,
N.
, et al,
2007
,
“Magnetic Resonance-Compatible Robotic and Mechatronics Systems for Image-Guided Interventions and Rehabilitation: A Review Study,”
Annu. Rev. Biomed. Eng.
,
9
, pp.
351
-
387
.
3.
Su
,
H.
,
Cole
,
G. A.
, and
Fischer
,
G. S.
,
2011
, “High-field MRI-Compatible Needle Placement Robots for Prostate Interventions: Pneumatic and Piezoelectric Approaches,”
Advances in Robotics and Virtual Reality
, eds.
Gulrez
,
T.
, and
Hassanien
,
A.
,
Springer-Verlag
, Chap. 1.
4.
Melzer
,
A.
, et al,
2008
,
“INNOMOTION for Percutaneous Image-Guided Interventions: Principles and Evaluation of this MR- and CT-Compatible Robotic System,”
IEEE Eng. Med. Biol. Mag.
, pp.
66
-
73
.
5.
Fischer
,
G. S.
, et al,
2008
,
“MRI-Compatible Pneumatic Robot for Transperineal Prostate Needle Placement,”
IEEE/ASME Trans. Mechatronics
,
13
(
3
), pp.
295
-
305
.
6.
Yang
,
B.
, et al,
2011
,
“Design and Implementation of a Pneumatically-Actuated Robot for Breast Biopsy under Continuous MRI,”
IEEE Int. Conf. Robot. Autom., Shanghai
, pp.
674
-
679
.
7.
Zemiti
,
N.
, et al,
2008
,
“LPR: A CT and MR-Compatible Puncture Robot to Enhance Accuracy and Safety of Image-Guided Interventions,”
IEEE/ASME Trans. Mechatronics
,
13
(
3
), pp.
306
-
315
.
8.
Wiebe
,
S.
, et al,
2001
,
“A Randomized, Controlled Trial of Surgery for Temporal-Lobe Epilepsy,”
N. Engl. J. Med.
,
345
(
5
), pp.
311
-
318
.
9.
Sperling
,
M. R.
,
2001
,
“Sudden Unexplained Death in Epilepsy,”
Epilepsy Currents
,
1
(
1
), pp.
21
-
23
.
10.
Berkovic
,
S. F.
,
1995
,
“Preoperative MRI Predicts Outcome of Temporal Lobectomy: An Actuarial Analysis,”
J. Neurol.
,
45
, pp.
1358
-
1363
.
11.
Comber
,
D. B.
,
Cardona
,
D.
,
Webster
,
R.J.
, III, and
Barth
,
E. J.
,
2012
,
“Sliding Mode Control of an MRI-Compatible Pneumatically Actuated Robot.,”
Bath/ASME Symp. Fluid Power & Motion Control
, eds.
Johnston
,
D. N.
, and
Plummer
,
A. R.
,
Centre for Power Transmission & Motion Control
,
University of Bath, UK
, pp.
283
-
293
.
12.
Roger
,
V.L.
,
Go
,
A.S.
,
Lloyd-Jones
,
D.M.
,
Benjamin
,
E.J.
,
Berry
,
J.D.
,
Borden
,
W.B.
, et al.,
2012
,
“Heart disease and stroke statistics—2012 update: a report from the American Heart Association,”
Circulation
,
125
(
1
):
e2
e220
.
13.
Dancause
,
N.
,
2006
,
“Vicarious Function of Remote Cortex following Stroke: Recent Evidence from Human and Animal,”
The Nueroscientist
,
12
(
6
), pp.
489
-
499
.
14.
Krebs
,
H. I.
,
Volpe
,
B. T.
,
Aisen
,
M. L.
,
Hogan
,
N.
,
2000
,
“Increasing productivity and quality of care: robot-aided neurorehabilitation,”
Journal of Rehabilitation Research and Development
,
37
(
6
), pg.
639
.
15.
Carey
,
J.R.
,
Kimberley
,
T.J.
,
Lewis
,
S.M.
,
Auerbach
,
E.J.
,
Dorsey
,
L.
,
Rundquist
,
R
,
Ugurbil
,
K.
,
2002
,
“Analysis of fMRI and finger tracking training in subjects with chronic stroke,”
Brain
,
125
, pp.
773
-
788
.
16.
Cramer
,
S.C.
,
Nelles
,
G.
,
Benson
,
R.R.
,
Kaplan
,
J.D.
,
Parker
,
R.A.
,
Kwong
,
K.K.
,
Kennedy
,
D.N.
,
Finklestein
,
S.P.
, and
Rosen
,
B.R.
,
1997
,
“A functional MRI study of subjects recovered from hemiparetic stroke,”
Stroke
,
28
(
12
), pp.
2518
-
2527
.
17.
Gassert
,
R.
,
Chapuis
,
D.
,
Bleuler
,
H.
,
Burdet
,
E.
,
2008
,
“Sensors for Applications in Magnetic Resonance Environments”
,
IEEE/ASME Transactions on Mechatronics
,
13
(
3
), pp.
335
-
344
.
18.
Turkseven
,
M.
, and
Ueda
,
J.
,
2011
,
“Design of an MRI Compatible Haptic Interface,”
IEEE International Conference on Intelligent Robots and Systems (IROS 2011)
, pp.
2139
-
2144
.
19.
Gassert
,
R.
,
Moser
,
R.
,
Burdet
,
E.
,
Bleuler
,
H.
,
2006
,
“MRI/fMRI-compatible robotic system with force feedback for interaction with human motion,”
IEEE/ ASME Transactions on Mechatronics
,
11
(
2
), pp.
216
-
224
.
20.
Slightam
,
J.
,
Gervasi
,
V.
,
2012
,
“Novel Integrated Fluid-Power Actuators for Functional End-Use Components and Systems via Selective Laser Sintering Nylon 12,”
Proceedings of the 2012 Solid Freeform Fabrications Symposium
, pp.
197
-
211
.
21.
Gibson
,
I.
,
Rosen
,
D. W.
,
Stucker
,
B.
,
2010
,
“Additive manufacturing technologies rapid prototyping to direct digital manufacturing,”
New York
:
Springer
.
22.
Webb
,
P.
,
2000
,
“A review of rapid prototyping (RP) techniques in the medical and biomedical sector,”
Journal of Medical Engineering & Technology
Vol.
24
No.
4
, pp.
149
-
153
.
23.
Faustini
,
M.
,
Neptune
,
R.
,
Crawford
,
R.
,
Stanhope
,
S.
,
2008
,
“Manufacture of Passive Dynamic Ankle-Foot Orthoses Using Selective Laser Sintering,”
IEEE Transactions on Biomedical Engineering.
Vol.
55
. No.
2
. pp.
784
-
789
.
You do not currently have access to this content.