This article discusses the performance optimization of wind turbine rotors with active flow control. An extensive multi-parameter investigation with a thorough matrix-grading system was performed to identify the most suitable solution for industrial quality, short/mid-term implementation on actual utility scale wind turbines. A very wide selection of aerodynamic flow control solutions was analyzed based on extensive multi-disciplinary literature review and through aerodynamic and aeroelastic simulations. It is suggested that the trailing edge devices have the most favorable performance in the field of system integration and mechanical design performance. Compliant structures like the flexible flap keep the number of moving parts to a minimum while maintaining high performance and manufacturing simplicity. The use of flexible and elastic materials based on polymers or rubber material improves the lightning strike resistance of these solutions and allows for low-cost large-scale production. The actuator principle, sensitivity, and reliability are decisive parameters, and pneumatic actuators seem to strike a good balance between performance, cost, and reliability.

You do not currently have access to this content.