This paper discusses the development of high-temperature fuel cells for stationary industrial and residential power generation applications. The system can operate on hydrogen, extracted by an internal reformer, and on a fuel comprising carbon monoxide. The technology enables fuel flexibility and, in addition, the high temperature provides high-quality co-generation of a thermal product and an ultimate overall efficiency exceeding 80%. Alone, high-temperature fuel cells show tremendous promise. Through hybridization, however, high-temperature fuel cells have a novel capability to achieve a quantum jump in fuel-to-electricity efficiency. In a hybrid configuration, high-temperature fuel cell technology promises new means to provide hoteling or propulsive power for ships, locomotives, long-distance trucks, and civil aircraft.

You do not currently have access to this content.