Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- ISBN-10
- ISSN
- EISSN
- Issue
- Volume
- References
- Conference Volume
- Paper No
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- ISBN-10
- ISSN
- EISSN
- Issue
- Volume
- References
- Conference Volume
- Paper No
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- ISBN-10
- ISSN
- EISSN
- Issue
- Volume
- References
- Conference Volume
- Paper No
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- ISBN-10
- ISSN
- EISSN
- Issue
- Volume
- References
- Conference Volume
- Paper No
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- ISBN-10
- ISSN
- EISSN
- Issue
- Volume
- References
- Conference Volume
- Paper No
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- ISBN-10
- ISSN
- EISSN
- Issue
- Volume
- References
- Conference Volume
- Paper No
NARROW
Date
Availability
1-1 of 1
Preservation
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Benjamin Kappler, Sjoerd van Tuijl, Teus J. van Laar, Dara R. Pabittei, Marc P. Buijsrogge, Marco Stijnen, Bas A. J. M. de Mol
Article Type: Research-Article
ASME J of Medical Diagnostics. November 2019, 2(4): 041002.
Paper No: JESMDT-18-1060
Published Online: October 10, 2019
Abstract
The use of slaughterhouse-based hearts has advantages over hearts obtained from laboratory animals for preclinical testing. However, slaughterhouse hearts have greater variability in cardiac function; this has resulted in a dispute over their actual reproducibility. This study explores the feasibility of examining the cardioplegic effluent during hypothermic cardiac arrest for the presence of biomarkers to predict poststorage heart function of slaughterhouse hearts. This may enable proactive measures to optimize preservation strategies and improve the initial cardiac performance of slaughterhouse heart experiments. Slaughterhouse pig hearts (n = 9; 420 ± 30 g) were arrested and flushed with an additional liter cardioplegia after 1 h. Effluent samples were examined for ammonia, lactate, troponin, and inorganic phosphate. After 2 h, hearts were hemoreperfused in the ex vivo heart platform PhysioHeart™ to restore physiological cardiac functions and to identify correlations between biomarkers and cardiac output. There was a negative correlation between cardiac output of revived hearts and levels of ammonia (r = −0.865; p = 0.002) and lactate (r = −0.763; p = 0.01). No correlation was found between cardiac output and levels of phosphate (r = −0.553; p = 0.12) and troponin (r = −0.367; p = 0.331). The analysis approach to assess cardioplegic biomarkers was feasible and enabled the estimation of the effectiveness of organ protection and cardiac function before reperfusion. Ammonia is a predictor for cardiac dysfunction. Effluent analysis prior to heart revival can uncover poststorage cardiac dysfunction in isolated hearts and may prevent failed experiments while improving reproducibility and standardization.